12.1.3 Representable Natural Transformations

Let $\mathcal{C}$ be a category, let $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, and let $f\colon A\to B$ be a morphism of $\mathcal{C}$.

The representable natural transformation associated to $f$ is the natural transformation

\[ h_{f}\colon h_{A}\Rightarrow h_{B} \]

consisting of the collection

\[ \left\{ h_{f|X} \colon \underbrace{h_{A}(X)}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{Hom}}_{\mathcal{C}}(X,A)} \to \underbrace{h_{B}(X)}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{Hom}}_{\mathcal{C}}(X,B)} \right\} _{X\in \operatorname {\mathrm{Obj}}(\mathcal{C})} \]

with

\[ h_{f|X} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{*}, \]

where $f_{*}$ is the postcomposition by $f$ morphism of Chapter 11: Categories, Item 2 of Definition 11.1.4.1.1.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: