Let $f\colon A\to B$ and $g\colon B\to C$ be morphisms of $\mathcal{C}$.
-
1.
The precomposition function associated to $f$ is the function
\[ f^{*} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (B,C\webright ) \to \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,C\webright ) \]defined by
\[ f^{*}\webleft (\phi \webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\phi \circ f \]for each $\phi \in \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (B,C\webright )$.