Let $f\colon A\to B$ and $g\colon B\to C$ be morphisms of $\mathcal{C}$.
Let $\mathcal{C}$ be a category and let $A,B,C\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$.
Let $f\colon A\to B$ and $g\colon B\to C$ be morphisms of $\mathcal{C}$.
The precomposition function associated to $f$ is the function
defined by
for each $\phi \in \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (B,C\webright )$.
The postcomposition function associated to $g$ is the function
defined by
for each $\phi \in \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright )$.
Let $A,B,C,D\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$ and let $f\colon A\to B$ and $g\colon B\to C$ be morphisms of $\mathcal{C}$.
Interaction Between Precomposition and Postcomposition. We have
Interaction With Composition I. We have
Interaction With Composition II. We have
Interaction With Composition III. We have
Interaction With Identities. We have