12.3.1 Foundations

let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

The restricted Yoneda embedding associated to $F$ is the functor

\[ {\text{よ}}_{F}\colon \mathcal{D}\hookrightarrow \mathsf{PSh}(\mathcal{C}) \]

defined as the composition

\[ \mathcal{D} \xhookrightarrow {{\text{よ}}_{\mathcal{D}}} \mathsf{PSh}(\mathcal{D}) \xrightarrow {F^{\mathsf{op},*}} \mathsf{PSh}(\mathcal{C}). \]

In detail, the restricted Yoneda embedding associated to $F$ is the functor

\[ {\text{よ}}_{F}\colon \mathcal{D}\hookrightarrow \mathsf{PSh}(\mathcal{C}) \]

where

  • Action on Objects. For each $A\in \operatorname {\mathrm{Obj}}(\mathcal{D})$, we have

    \begin{align*} {\text{よ}}_{F}(A) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h_{A}\circ F^{\mathsf{op}}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h^{F(-)}_{A}. \end{align*}
  • Action on Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{D})$, the action on morphisms

    \[ {\text{よ}}_{F|A,B}\colon \operatorname {\mathrm{Hom}}_{\mathcal{D}}(A,B)\to \operatorname {\mathrm{Nat}}(h^{F(-)}_{A},h^{F(-)}_{B}) \]

    of ${\text{よ}}_{F}$ at $(A,B)$ is given by

    \begin{align*} {\text{よ}}_{F|A,B}(f) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h^{F(-)}_{f}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h_{f}\star \operatorname {\mathrm{id}}_{F^{\mathsf{op}}}\end{align*}

    for each $f\in \operatorname {\mathrm{Hom}}_{\mathcal{D}}(A,B)$, where $h_{f}$ is the representable natural transformation associated to $f$ of Definition 12.1.3.1.1.

Here are some examples of restricted Yoneda embeddings.

  1. 1.

    The Nerve Functor. Let

    \[ \iota \colon \mathbb {\Delta }\hookrightarrow \mathsf{Cats} \]

    be the functor given by $[n]\to \mathbb {n}$. Then the restricted Yoneda embedding

    \[ {\text{よ}}_{\iota }\colon \mathsf{Cats}\to \underbrace{\mathsf{PSh}(\mathbb {\Delta })}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{sSets}} \]

    of $\iota $ is given by the nerve functor $\mathrm{N}_{\bullet }$ of Unresolved reference, Unresolved reference.

  2. 2.

    The Singular Simplicial Set Associated to a Topological Space. Let

    \[ \iota \colon \mathbb {\Delta }\hookrightarrow \mathsf{Top} \]

    be the functor given by $[n]\to \left\lvert \Delta ^{n}\right\rvert $. Then the restricted Yoneda embedding

    \[ {\text{よ}}_{\iota }\colon \mathsf{Top}\to \underbrace{\mathsf{PSh}(\mathbb {\Delta })}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{sSets}} \]

    of $\iota $ is given by the singular simplicial set functor $\mathrm{Sing}_{\bullet }$ of Unresolved reference, Unresolved reference.

  3. 3.

    The Coherent Nerve Functor. Let

    \[ \iota \colon \mathbb {\Delta }\hookrightarrow \mathsf{sCats} \]

    be the functor given by $[n]\to \mathsf{Path}(\Delta ^{n})$, where $\mathsf{Path}(\Delta ^{n})$ is the simplicial category of Unresolved reference, Unresolved reference. Then the restricted Yoneda embedding

    \[ {\text{よ}}_{\iota }\colon \mathsf{sCats}\to \underbrace{\mathsf{PSh}(\mathbb {\Delta })}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{sSets}} \]

    of $\iota $ is given by the coherent nerve functor $\mathrm{N}^{\mathrm{hc}}_{\bullet }$ of Unresolved reference, Unresolved reference.

  4. 4.

    Kan’s $\mathrm{Ex}$ Functor. Let

    \[ \mathrm{sd}\colon \mathbb {\Delta }\hookrightarrow \mathsf{sSets} \]

    be the functor given by $[n]\to \mathrm{Sd}(\Delta ^{n})$, where $\mathrm{Sd}(\Delta ^{n})$ is the barycentric subdivision of $\Delta ^{n}$ of Unresolved reference. Then the restricted Yoneda embedding

    \[ {\text{よ}}_{\mathrm{sd}}\colon \mathsf{sSets}\to \underbrace{\mathsf{PSh}(\mathbb {\Delta })}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{sSets}} \]

    of $\mathrm{sd}$ is given by Kan’s $\mathrm{Ex}$ functor of Unresolved reference.

let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

  1. 1.

    Interaction With Fully Faithfulness. The following conditions are equivalent:

    1. (a)

      The restricted Yoneda embedding ${\text{よ}}_{F}$ is fully faithful.

    2. (b)

      The functor $F$ is dense (Unresolved reference, Unresolved reference).

  2. 2.

    As a Left Kan Extension. We have a natural isomorphism of functors

Item 1: Interaction With Fully Faithfulness
Omitted.

Item 2: As a Left Kan Extension
Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: