12.3.1 Foundations

    let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

    The restricted Yoneda embedding associated to $F$ is the functor

    \[ {\text{よ}}_{F}\colon \mathcal{D}\hookrightarrow \mathsf{PSh}(\mathcal{C}) \]

    defined as the composition

    \[ \mathcal{D} \xhookrightarrow {{\text{よ}}_{\mathcal{D}}} \mathsf{PSh}(\mathcal{D}) \xrightarrow {F^{\mathsf{op},*}} \mathsf{PSh}(\mathcal{C}). \]

    In detail, the restricted Yoneda embedding associated to $F$ is the functor

    \[ {\text{よ}}_{F}\colon \mathcal{D}\hookrightarrow \mathsf{PSh}(\mathcal{C}) \]

    where

    • Action on Objects. For each $A\in \operatorname {\mathrm{Obj}}(\mathcal{D})$, we have

      \begin{align*} {\text{よ}}_{F}(A) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h_{A}\circ F^{\mathsf{op}}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h^{F(-)}_{A}. \end{align*}
    • Action on Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{D})$, the action on morphisms

      \[ {\text{よ}}_{F|A,B}\colon \operatorname {\mathrm{Hom}}_{\mathcal{D}}(A,B)\to \operatorname {\mathrm{Nat}}(h^{F(-)}_{A},h^{F(-)}_{B}) \]

      of ${\text{よ}}_{F}$ at $(A,B)$ is given by

      \begin{align*} {\text{よ}}_{F|A,B}(f) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h^{F(-)}_{f}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h_{f}\star \operatorname {\mathrm{id}}_{F^{\mathsf{op}}}\end{align*}

      for each $f\in \operatorname {\mathrm{Hom}}_{\mathcal{D}}(A,B)$, where $h_{f}$ is the representable natural transformation associated to $f$ of Definition 12.1.3.1.1.

    Here are some examples of restricted Yoneda embeddings.

    1. 1.

      The Nerve Functor. Let

      \[ \iota \colon \mathbb {\Delta }\hookrightarrow \mathsf{Cats} \]

      be the functor given by $[n]\to \mathbb {n}$. Then the restricted Yoneda embedding

      \[ {\text{よ}}_{\iota }\colon \mathsf{Cats}\to \underbrace{\mathsf{PSh}(\mathbb {\Delta })}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{sSets}} \]

      of $\iota $ is given by the nerve functor $\mathrm{N}_{\bullet }$ of Unresolved reference, Unresolved reference.

    2. 2.

      The Singular Simplicial Set Associated to a Topological Space. Let

      \[ \iota \colon \mathbb {\Delta }\hookrightarrow \mathsf{Top} \]

      be the functor given by $[n]\to \left\lvert \Delta ^{n}\right\rvert $. Then the restricted Yoneda embedding

      \[ {\text{よ}}_{\iota }\colon \mathsf{Top}\to \underbrace{\mathsf{PSh}(\mathbb {\Delta })}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{sSets}} \]

      of $\iota $ is given by the singular simplicial set functor $\mathrm{Sing}_{\bullet }$ of Unresolved reference, Unresolved reference.

  • 3.

    The Coherent Nerve Functor. Let

    \[ \iota \colon \mathbb {\Delta }\hookrightarrow \mathsf{sCats} \]

    be the functor given by $[n]\to \mathsf{Path}(\Delta ^{n})$, where $\mathsf{Path}(\Delta ^{n})$ is the simplicial category of Unresolved reference, Unresolved reference. Then the restricted Yoneda embedding

    \[ {\text{よ}}_{\iota }\colon \mathsf{sCats}\to \underbrace{\mathsf{PSh}(\mathbb {\Delta })}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{sSets}} \]

    of $\iota $ is given by the coherent nerve functor $\mathrm{N}^{\mathrm{hc}}_{\bullet }$ of Unresolved reference, Unresolved reference.

  • 4.

    Kan’s $\mathrm{Ex}$ Functor. Let

    \[ \mathrm{sd}\colon \mathbb {\Delta }\hookrightarrow \mathsf{sSets} \]

    be the functor given by $[n]\to \mathrm{Sd}(\Delta ^{n})$, where $\mathrm{Sd}(\Delta ^{n})$ is the barycentric subdivision of $\Delta ^{n}$ of Unresolved reference. Then the restricted Yoneda embedding

    \[ {\text{よ}}_{\mathrm{sd}}\colon \mathsf{sSets}\to \underbrace{\mathsf{PSh}(\mathbb {\Delta })}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{sSets}} \]

    of $\mathrm{sd}$ is given by Kan’s $\mathrm{Ex}$ functor of Unresolved reference.

  • let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

    1. 1.

      Interaction With Fully Faithfulness. The following conditions are equivalent:

      1. (a)

        The restricted Yoneda embedding ${\text{よ}}_{F}$ is fully faithful.

      2. (b)

        The functor $F$ is dense (Unresolved reference, Unresolved reference).

    2. 2.

      As a Left Kan Extension. We have a natural isomorphism of functors

    Item 1: Interaction With Fully Faithfulness
    Omitted.

    Item 2: As a Left Kan Extension
    Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: