12.4.1 The Tensor Product of Presheaves With Copresheaves

    Let $\mathcal{C}$ be a category, let $\mathcal{F}\colon \mathcal{C}^{\mathsf{op}}\to \mathsf{Sets}$ be a presheaf on $\mathcal{C}$, and let $G\colon \mathcal{C}\to \mathsf{Sets}$ be a copresheaf on $\mathcal{C}$.

    The tensor product of $\mathcal{F}$ with $G$ is the set $\mathcal{F}\boxtimes _{\mathcal{C}}G$1 defined by

    \[ \mathcal{F}\boxtimes _{\mathcal{C}}G\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int ^{A\in \mathcal{C}}\mathcal{F}(A)\times G(A). \]


    1. 1Further Notation: Also written simply $\mathcal{F}\boxtimes G$.

    In other words, the tensor product of $\mathcal{F}$ with $G$ is the set $\mathcal{F}\boxtimes _{\mathcal{C}}G$ defined as the coend of the functor

    \[ \mathcal{C}^{\mathsf{op}}\times \mathcal{C}\xrightarrow {\mathcal{F}\times G}\mathsf{Sets}\times \mathsf{Sets}\xrightarrow {\times }\mathsf{Sets}, \]

    which is equivalently the composition

    in $\mathsf{Prof}$.

    Let $\mathcal{C}$ be a category.

    1. 1.

      Functoriality. The assignments $\mathcal{F},G,(\mathcal{F},G)\mapsto \mathcal{F}\boxtimes _{\mathcal{C}}G$ define functors

      \[ \begin{array}{ccc} \mathcal{F}\boxtimes _{\mathcal{C}}-\colon \mkern -15mu & \mathsf{PSh}(\mathcal{C}) \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets},\\ -\boxtimes _{\mathcal{C}}G\colon \mkern -15mu & \mathsf{CoPSh}(\mathcal{C}) \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets},\\ -_{1}\boxtimes _{\mathcal{C}}-_{2}\colon \mkern -15mu & \mathsf{PSh}(\mathcal{C})\times \mathsf{CoPSh}(\mathcal{C}) \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}. \end{array} \]
    2. 2.

      As a Composition of Profunctors. Let $\mathcal{C}$ be a category and let:

      • $\mathcal{F}\colon \mathsf{pt}\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}\mathcal{C}$ be a presheaf on $\mathcal{C}$, viewed as a profunctor.

      • $F\colon \mathcal{C}\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}\mathsf{pt}$ be a copresheaf on $\mathcal{C}$, viewed as a profunctor.

      We have a natural isomorphism of profunctors

      natural in $\mathcal{F}\in \operatorname {\mathrm{Obj}}(\mathsf{PSh}(\mathcal{C}))$ and $F\in \operatorname {\mathrm{Obj}}(\mathsf{CoPSh}(\mathcal{C}))$.

    3. 3.

      Interaction With Representable Presheaves. Let $\mathcal{F}$ be a presheaf on $\mathcal{C}$. We have a bijection of sets

      \[ \mathcal{F}\boxtimes _{\mathcal{C}}h^{X}\cong \mathcal{F}(X), \]

      natural in $X\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, giving a natural isomorphism of functors

    4. 4.

      Interaction With Corepresentable Copresheaves. Let $G$ be a copresheaf on $\mathcal{C}$. We have a bijection of sets

      \[ h_{X}\boxtimes _{\mathcal{C}}G\cong G(X), \]

      natural in $X\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, giving a natural isomorphism of functors

  • 5.

    Interaction With Yoneda Extensions. Let $G\colon \mathcal{C}\to \mathsf{Sets}$ be a copresheaf on $\mathcal{C}$. We have a natural isomorphism

    natural in $G\in \operatorname {\mathrm{Obj}}(\mathsf{CoPSh}(\mathcal{C}))$.

  • 6.

    Interaction With Contravariant Yoneda Extensions. Let $\mathcal{F}\colon \mathcal{C}^{\mathsf{op}}\to \mathsf{Sets}$ be a presheaf on $\mathcal{C}$. We have a natural isomorphism

    natural in $\mathcal{F}\in \operatorname {\mathrm{Obj}}(\mathsf{PSh}(\mathcal{C}))$.

  • Item 1: Functoriality
    Omitted.

    Item 2: As a Composition of Profunctors
    Clear.

    Item 3: Interaction With Representable Presheaves
    This follows from Unresolved reference.

    Item 4: Interaction With Corepresentable Copresheaves
    This follows from Unresolved reference.

    Item 5: Interaction With Yoneda Extensions
    This is a special case of Item 5 of Proposition 12.3.2.1.3.

    Item 6: Interaction With Contravariant Yoneda Extensions
    This is a special case of Unresolved reference of Unresolved reference.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: