12.4.2 The Tensor of a Presheaf With a Functor

    Let $\mathcal{C}$ be a category, let $\mathcal{D}$ be a category with coproducts, let $\mathcal{F}\colon \mathcal{C}^{\mathsf{op}}\to \mathsf{Sets}$ be a presheaf on $\mathcal{C}$, and let $G\colon \mathcal{C}\to \mathcal{D}$ be a functor.

    The tensor of $\mathcal{F}$ with $G$ is the object $\mathcal{F}\odot _{\mathcal{C}}G$1 of $\mathcal{D}$ defined by

    \[ \mathcal{F}\odot _{\mathcal{C}}G\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int ^{A\in \mathcal{C}}\mathcal{F}(A)\odot G(A). \]


    1. 1Further Notation: Also written simply $\mathcal{F}\odot G$.

    In other words, the tensor of $\mathcal{F}$ with $G$ is the object $\mathcal{F}\odot _{\mathcal{C}}G$ of $\mathcal{D}$ defined as the coend of the functor

    \[ \mathcal{C}^{\mathsf{op}}\times \mathcal{C}\xrightarrow {\mathcal{F}\times G}\mathsf{Sets}\times \mathcal{D}\xrightarrow {\odot }\mathcal{D}. \]

    Let $\mathcal{C}$ be a category.

  • 1.

    Functoriality. The assignments $\mathcal{F},G,(\mathcal{F},G)\mapsto \mathcal{F}\odot _{\mathcal{C}}G$ define functors

    \[ \begin{array}{ccc} \mathcal{F}\odot _{\mathcal{C}}-\colon \mkern -15mu & \mathsf{PSh}(\mathcal{C}) \mkern -17.5mu& {}\mathbin {\to }\mathcal{D},\\ -\odot _{\mathcal{C}}G\colon \mkern -15mu & \mathsf{Fun}(\mathcal{C},\mathcal{D}) \mkern -17.5mu& {}\mathbin {\to }\mathcal{D},\\ -_{1}\odot _{\mathcal{C}}-_{2}\colon \mkern -15mu & \mathsf{PSh}(\mathcal{C})\times \mathsf{Fun}(\mathcal{C},\mathcal{D}) \mkern -17.5mu& {}\mathbin {\to }\mathcal{D}. \end{array} \]
  • 2.

    Interaction With Corepresentable Copresheaves. We have an isomorphism

    \[ h_{X}\odot _{\mathcal{C}}G\cong G(X), \]

    natural in $X\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, giving a natural isomorphism of functors

    \[ h_{(-)}\odot _{\mathcal{C}}G\cong G. \]
  • 3.

    Interaction With Yoneda Extensions. We have a natural isomorphism

    \[ \operatorname {\mathrm{Lan}}_{{\text{よ}}}(G)\cong (-)\odot _{\mathcal{C}}G, \]

    natural in $G\in \operatorname {\mathrm{Obj}}(\mathsf{Fun}(\mathcal{C},\mathcal{D}))$.

  • Item 1: Functoriality
    Omitted.

    Unresolved reference: Interaction With Corepresentable Copresheaves
    This follows from Unresolved reference.

    Item 3: Interaction With Yoneda Extensions
    This is a repetition of Item 5 of Proposition 12.3.2.1.3, and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: