11.9.5 Horizontal Composition of Natural Transformations

    The horizontal composition1,2 of two natural transformations $\alpha \colon F\Longrightarrow G$ and $\beta \colon H\Longrightarrow K$ as in the diagram

    of $\alpha $ and $\beta $ is the natural transformation

    \[ \beta \mathbin {\star }\alpha \colon (H\circ F)\Longrightarrow (K\circ G), \]

    as in the diagram

    consisting of the collection

    \[ \left\{ (\beta \mathbin {\star }\alpha )_{A} \colon H(F(A)) \to K(G(A)) \right\} _{A\in \operatorname {\mathrm{Obj}}(\mathcal{C})}, \]

    of morphisms of $\mathcal{E}$ with


    1. 1Further Terminology: Also called the Godement product of $\alpha $ and $\beta $.
    2. 2Horizontal composition forms a map
      \[ \mathbin {\star }_{(F,H),(G,K)}\colon \operatorname {\mathrm{Nat}}(H,K)\times \operatorname {\mathrm{Nat}}(F,G)\to \operatorname {\mathrm{Nat}}(H\circ F,K\circ G). \]

    First, we claim that we indeed have

    This is, however, simply the naturality square for $\beta $ applied to the morphism $\alpha _{A}\colon F(A)\to G(A)$. Next, we check the naturality condition for $\beta \mathbin {\star }\alpha $, which is the requirement that the boundary of the diagram
    commutes. Since

    • Subdiagram (1) commutes by the naturality of $\alpha $.

    • Subdiagram (2) commutes by the naturality of $\beta $.

    so does the boundary diagram. Hence $\beta \circ \alpha $ is a natural transformation.1


    1. 1Reference: Proposition 1.3.4 of [Borceux, Handbook of Categorical Algebra I].

    Let

    be a diagram in $\mathsf{Cats}_{\mathsf{2}}$.

    1. 1.

      The left whiskering of $\alpha $ with $G$ is the natural transformation1

      \[ \operatorname {\mathrm{id}}_{G}\star \alpha \colon G\circ \phi \Longrightarrow G\circ \psi . \]
    2. 2.

      The right whiskering of $\alpha $ with $F$ is the natural transformation2

      \[ \alpha \star \operatorname {\mathrm{id}}_{F}\colon \phi \circ F\Longrightarrow \psi \circ F. \]


    1. 1Further Notation: Also written $G\alpha $ or $G\mathbin {\star }\alpha $, although we won’t use either of these notations in this work.
    2. 2Further Notation: Also written $\alpha F$ or $\alpha \mathbin {\star }F$, although we won’t use either of these notations in this work.

    Let $\mathcal{C}$, $\mathcal{D}$, and $\mathcal{E}$ be categories.

    1. 1.

      Functionality. The assignment $(\beta ,\alpha )\mapsto \beta \mathbin {\star }\alpha $ defines a function

      \[ \mathbin {\star }_{(F,G),(H,K)}\colon \operatorname {\mathrm{Nat}}(H,K)\times \operatorname {\mathrm{Nat}}(F,G)\to \operatorname {\mathrm{Nat}}(H\circ F,K\circ G). \]
    2. 2.

      Associativity. Let

      be a diagram in $\mathsf{Cats}_{\mathsf{2}}$. The diagram
      commutes, i.e. given natural transformations
      we have

      \[ (\gamma \mathbin {\star }\beta )\mathbin {\star }\alpha =\gamma \mathbin {\star }(\beta \mathbin {\star }\alpha ). \]
    3. 3.

      Interaction With Identities. Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors. The diagram

      commutes, i.e. we have

      \[ \operatorname {\mathrm{id}}_{G}\mathbin {\star }\operatorname {\mathrm{id}}_{F}=\operatorname {\mathrm{id}}_{G\circ F}. \]
    4. 4.

      Middle Four Exchange. Let $F_{1},F_{2},F_{3}\colon \mathcal{C}\to \mathcal{D}$ and $G_{1},G_{2},G_{3}\colon \mathcal{D}\to \mathcal{E}$ be functors. The diagram

      commutes, i.e. given a diagram
      in $\mathsf{Cats}_{\mathsf{2}}$, we have

      \[ (\beta '\mathbin {\star }\alpha ')\circ (\beta \mathbin {\star }\alpha )=(\beta '\circ \beta )\mathbin {\star }(\alpha '\circ \alpha ). \]
  • 5.

    Interaction With Natural Isomorphisms. Let $\alpha \colon F_{1}\Rightarrow G_{1}$ and $\beta \colon F_{2}\Rightarrow G_{2}$ be natural transformations.

    1. (a)

      If $\alpha $ and $\beta $ are natural isomorphisms, then so is $\beta \mathbin {\star }\alpha $.

    2. (b)

      If $\alpha $ is an isomorphism, then so is $\operatorname {\mathrm{id}}_{G_{1}}\mathbin {\star }\alpha \colon G_{1}\circ F_{1}\Rightarrow G_{1}\circ F_{2}$.

    3. (c)

      If $\beta $ is an isomorphism, then so is $\beta \mathbin {\star }\operatorname {\mathrm{id}}_{F_{1}}\colon G_{1}\circ F_{1}\Rightarrow G_{2}\circ F_{1}$.

  • Item 1: Functionality
    There is nothing to prove.

    Item 2: Associativity
    Write $G_{2}G_{1}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}G_{2}\circ G_{1}$, and similarly for other compositions. For each $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, we have

    \begin{align*} ((\gamma \mathbin {\star }\beta )\mathbin {\star }\alpha )_{A} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(\gamma \mathbin {\star }\beta )_{G_{1}(A)}\circ F_{3}F_{2}(\alpha _{A})\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(\gamma _{G_{2}G_{1}(A)}\circ F_{3}(\beta _{G_{1}(A)}))\circ F_{3}F_{2}(\alpha _{A})\\ & = \gamma _{G_{2}G_{1}(A)}\circ F_{3}(\beta _{G_{1}(A)})\circ F_{3}F_{2}(\alpha _{A})\\ & = \gamma _{G_{2}G_{1}(A)}\circ F_{3}(\beta _{G_{1}(A)}\circ F_{2}(\alpha _{A}))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\gamma _{G_{2}G_{1}(A)}\circ F_{3}((\beta \mathbin {\star }\alpha )_{A})\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(\gamma \mathbin {\star }(\beta \mathbin {\star }\alpha ))_{A}. \end{align*}

    Thus we have $(\gamma \mathbin {\star }\beta )\mathbin {\star }\alpha =\gamma \mathbin {\star }(\beta \mathbin {\star }\alpha )$, showing horizontal composition to be associative.

    Item 3: Interaction With Identities
    We have

    \begin{align*} (\operatorname {\mathrm{id}}_{G}\mathbin {\star }\operatorname {\mathrm{id}}_{F})_{A} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(\operatorname {\mathrm{id}}_{G})_{F_{A}}\circ G_{(\operatorname {\mathrm{id}}_{F})_{A}}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{G_{F_{A}}}\circ G_{\operatorname {\mathrm{id}}_{F_{A}}}\\ & = \operatorname {\mathrm{id}}_{G_{F_{A}}}\circ \operatorname {\mathrm{id}}_{G_{F_{A}}}\\ & = \operatorname {\mathrm{id}}_{G_{F_{A}}}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(\operatorname {\mathrm{id}}_{G\circ F})_{A} \end{align*}

    for each $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, showing the desired equality.

    Item 4: Middle Four Exchange
    Let $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$ and consider the diagram
    The top composition
    is given by $((\beta '\circ \beta )\mathbin {\star }(\alpha '\circ \alpha ))_{A}$, while the bottom composition
    is given by $((\beta '\mathbin {\star }\alpha ')\circ (\beta \mathbin {\star }\alpha ))_{A}$. Now, Subdiagram (1) corresponds to the naturality condition
    for $\beta \colon G_{1}\Longrightarrow G_{2}$ at $\alpha '_{A}\colon F_{2}(A)\to F_{3}(A)$, and thus commutes. Thus we have

    \[ ((\beta '\circ \beta )\mathbin {\star }(\alpha '\circ \alpha ))_{A} = ((\beta '\mathbin {\star }\alpha ')\circ (\beta \mathbin {\star }\alpha ))_{A} \]

    for each $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$ and therefore

    \[ (\beta '\mathbin {\star }\alpha ')\circ (\beta \mathbin {\star }\alpha )=(\beta '\circ \beta )\mathbin {\star }(\alpha '\circ \alpha ). \]

    This finishes the proof.

    Item 5: Interaction With Natural Isomorphisms
    Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: