The coequaliser of $\webleft (f,g\webright )$ is the pointed set $\webleft (\operatorname {\mathrm{CoEq}}\webleft (f,g\webright ),\webleft [y_{0}\webright ]\webright )$.
6.3.5 Coequalisers
Let $f,g\colon \webleft (X,x_{0}\webright )\rightrightarrows \webleft (Y,y_{0}\webright )$ be morphisms of pointed sets.
The coequaliser of $\webleft (f,g\webright )$ is the pair $\smash {\webleft (\webleft (\operatorname {\mathrm{CoEq}}\webleft (f,g\webright ),\webleft [y_{0}\webright ]\webright ),\operatorname {\mathrm{coeq}}\webleft (f,g\webright )\webright )}$ consisting of:
-
•
The Colimit. The pointed set $\webleft (\operatorname {\mathrm{CoEq}}\webleft (f,g\webright ),\webleft [y_{0}\webright ]\webright )$, where $\operatorname {\mathrm{CoEq}}\webleft (f,g\webright )$ is the coequaliser of $f$ and $g$ as in Chapter 4: Constructions With Sets, Definition 4.2.5.1.1.
-
•
The Cocone. The map
\[ \operatorname {\mathrm{coeq}}\webleft (f,g\webright )\colon Y\twoheadrightarrow \webleft (\operatorname {\mathrm{CoEq}}\webleft (f,g\webright ),\webleft [y_{0}\webright ]\webright ) \]given by the quotient map, as in Chapter 4: Constructions With Sets, Item 2 of Construction 4.2.5.1.2.
We claim that $\webleft (\operatorname {\mathrm{CoEq}}\webleft (f,g\webright ),\webleft [y_{0}\webright ]\webright )$ is the categorical coequaliser of $f$ and $g$ in $\mathsf{Sets}_{*}$. First we need to check that the relevant coequaliser diagram commutes, i.e. that we have
Indeed, we have
for each $x\in X$. Next, we prove that $\operatorname {\mathrm{CoEq}}\webleft (f,g\webright )$ satisfies the universal property of the coequaliser. Suppose we have a diagram of the form
where we have used that $c$ is a morphism of pointed sets.
Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets and let $f,g,h\colon \webleft (X,x_{0}\webright )\to \webleft (Y,y_{0}\webright )$ be morphisms of pointed sets.
-
1.
Associativity. We have isomorphisms of pointed sets
\[ \underbrace{\operatorname {\mathrm{CoEq}}\webleft (\operatorname {\mathrm{coeq}}\webleft (f,g\webright )\circ f,\operatorname {\mathrm{coeq}}\webleft (f,g\webright )\circ h\webright )}_{{}=\operatorname {\mathrm{CoEq}}\webleft (\operatorname {\mathrm{coeq}}\webleft (f,g\webright )\circ g,\operatorname {\mathrm{coeq}}\webleft (f,g\webright )\circ h\webright )}\cong \operatorname {\mathrm{CoEq}}\webleft (f,g,h\webright ) \cong \underbrace{\operatorname {\mathrm{CoEq}}\webleft (\operatorname {\mathrm{coeq}}\webleft (g,h\webright )\circ f,\operatorname {\mathrm{coeq}}\webleft (g,h\webright )\circ g\webright )}_{{}=\operatorname {\mathrm{CoEq}}\webleft (\operatorname {\mathrm{coeq}}\webleft (g,h\webright )\circ f,\operatorname {\mathrm{coeq}}\webleft (g,h\webright )\circ h\webright )}, \]in $\mathsf{Sets}_{*}$. -
2.
Unitality. We have an isomorphism of pointed sets
\[ \operatorname {\mathrm{CoEq}}\webleft (f,f\webright )\cong B. \] -
3.
Commutativity. We have an isomorphism of pointed sets
\[ \operatorname {\mathrm{CoEq}}\webleft (f,g\webright ) \cong \operatorname {\mathrm{CoEq}}\webleft (g,f\webright ). \]