6.3.5 Coequalisers

    Let $f,g\colon (X,x_{0})\rightrightarrows (Y,y_{0})$ be morphisms of pointed sets.

    The coequaliser of $(f,g)$ is the pointed set $(\operatorname {\mathrm{CoEq}}(f,g),[y_{0}])$.

    The coequaliser of $(f,g)$ is the pair $\smash {((\operatorname {\mathrm{CoEq}}(f,g),[y_{0}]),\operatorname {\mathrm{coeq}}(f,g))}$ consisting of:

    We claim that $(\operatorname {\mathrm{CoEq}}(f,g),[y_{0}])$ is the categorical coequaliser of $f$ and $g$ in $\mathsf{Sets}_{*}$. First we need to check that the relevant coequaliser diagram commutes, i.e. that we have

    \[ \operatorname {\mathrm{coeq}}(f,g)\circ f=\operatorname {\mathrm{coeq}}(f,g)\circ g. \]

    Indeed, we have

    \begin{align*} [\operatorname {\mathrm{coeq}}(f,g)\circ f](x) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\operatorname {\mathrm{coeq}}(f,g)](f(x))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[f(x)]\\ & = [g(x)]\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\operatorname {\mathrm{coeq}}(f,g)](g(x))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\operatorname {\mathrm{coeq}}(f,g)\circ g](x)\end{align*}

    for each $x\in X$. Next, we prove that $\operatorname {\mathrm{CoEq}}(f,g)$ satisfies the universal property of the coequaliser. Suppose we have a diagram of the form

    in $\mathsf{Sets}$. Then, since $c(f(a))=c(g(a))$ for each $a\in A$, it follows from Chapter 10: Conditions on Relations, Item 4 and Item 5 of Proposition 10.6.2.1.3 that there exists a unique map $\phi \colon \operatorname {\mathrm{CoEq}}(f,g)\overset {\exists !}{\to }C$ making the diagram
    commute, where we note that $\phi $ is indeed a morphism of pointed sets since

    \begin{align*} \phi ([y_{0}]) & = [\phi \circ \operatorname {\mathrm{coeq}}(f,g)]([y_{0}])\\ & = c([y_{0}])\\ & = *, \end{align*}

    where we have used that $c$ is a morphism of pointed sets.

    Let $(X,x_{0})$ and $(Y,y_{0})$ be pointed sets and let $f,g,h\colon (X,x_{0})\to (Y,y_{0})$ be morphisms of pointed sets.

  • 1.

    Associativity. We have isomorphisms of pointed sets

    \[ \underbrace{\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(f,g)\circ f,\operatorname {\mathrm{coeq}}(f,g)\circ h)}_{{}=\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(f,g)\circ g,\operatorname {\mathrm{coeq}}(f,g)\circ h)}\cong \operatorname {\mathrm{CoEq}}(f,g,h) \cong \underbrace{\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(g,h)\circ f,\operatorname {\mathrm{coeq}}(g,h)\circ g)}_{{}=\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(g,h)\circ f,\operatorname {\mathrm{coeq}}(g,h)\circ h)}, \]
    where $\operatorname {\mathrm{CoEq}}(f,g,h)$ is the colimit of the diagram
    in $\mathsf{Sets}_{*}$.

  • 2.

    Unitality. We have an isomorphism of pointed sets

    \[ \operatorname {\mathrm{CoEq}}(f,f)\cong B. \]
  • 3.

    Commutativity. We have an isomorphism of pointed sets

    \[ \operatorname {\mathrm{CoEq}}(f,g) \cong \operatorname {\mathrm{CoEq}}(g,f). \]

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: