The coequaliser of $(f,g)$ is the pointed set $(\operatorname {\mathrm{CoEq}}(f,g),[y_{0}])$.
6.3.5 Coequalisers
Let $f,g\colon (X,x_{0})\rightrightarrows (Y,y_{0})$ be morphisms of pointed sets.
The coequaliser of $(f,g)$ is the pair $\smash {((\operatorname {\mathrm{CoEq}}(f,g),[y_{0}]),\operatorname {\mathrm{coeq}}(f,g))}$ consisting of:
-
•
The Colimit. The pointed set $(\operatorname {\mathrm{CoEq}}(f,g),[y_{0}])$, where $\operatorname {\mathrm{CoEq}}(f,g)$ is the coequaliser of $f$ and $g$ as in Chapter 4: Constructions With Sets, Definition 4.2.5.1.1.
-
•
The Cocone. The map
\[ \operatorname {\mathrm{coeq}}(f,g)\colon Y\twoheadrightarrow (\operatorname {\mathrm{CoEq}}(f,g),[y_{0}]) \]given by the quotient map, as in Chapter 4: Constructions With Sets, Item 2 of Construction 4.2.5.1.2.
We claim that $(\operatorname {\mathrm{CoEq}}(f,g),[y_{0}])$ is the categorical coequaliser of $f$ and $g$ in $\mathsf{Sets}_{*}$. First we need to check that the relevant coequaliser diagram commutes, i.e. that we have
Indeed, we have
for each $x\in X$. Next, we prove that $\operatorname {\mathrm{CoEq}}(f,g)$ satisfies the universal property of the coequaliser. Suppose we have a diagram of the form
where we have used that $c$ is a morphism of pointed sets.
Let $(X,x_{0})$ and $(Y,y_{0})$ be pointed sets and let $f,g,h\colon (X,x_{0})\to (Y,y_{0})$ be morphisms of pointed sets.
-
1.
Associativity. We have isomorphisms of pointed sets
\[ \underbrace{\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(f,g)\circ f,\operatorname {\mathrm{coeq}}(f,g)\circ h)}_{{}=\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(f,g)\circ g,\operatorname {\mathrm{coeq}}(f,g)\circ h)}\cong \operatorname {\mathrm{CoEq}}(f,g,h) \cong \underbrace{\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(g,h)\circ f,\operatorname {\mathrm{coeq}}(g,h)\circ g)}_{{}=\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(g,h)\circ f,\operatorname {\mathrm{coeq}}(g,h)\circ h)}, \]in $\mathsf{Sets}_{*}$. -
2.
Unitality. We have an isomorphism of pointed sets
\[ \operatorname {\mathrm{CoEq}}(f,f)\cong B. \] -
3.
Commutativity. We have an isomorphism of pointed sets
\[ \operatorname {\mathrm{CoEq}}(f,g) \cong \operatorname {\mathrm{CoEq}}(g,f). \]