7.4.1 Foundations

Let $(X,x_{0})$ and $(Y,y_{0})$ be pointed sets.

The right tensor product of pointed sets is the functor1

\[ \rhd \colon \mathsf{Sets}_{*}\times \mathsf{Sets}_{*}\to \mathsf{Sets}_{*} \]

defined as the composition

\[ \mathsf{Sets}_{*}\times \mathsf{Sets}_{*}\overset {{\text{忘}}\times \mathsf{id}}{\to }\mathsf{Sets}\times \mathsf{Sets}_{*}\overset {\odot }{\to }\mathsf{Sets}_{*}, \]

where:

  • ${\text{忘}}\colon \mathsf{Sets}_{*}\to \mathsf{Sets}$ is the forgetful functor from pointed sets to sets.

  • $\odot \colon \mathsf{Sets}\times \mathsf{Sets}_{*}\to \mathsf{Sets}_{*}$ is the tensor functor of Item 1 of Proposition 7.2.1.1.6.


  1. 1Further Notation: Also written $\rhd _{\mathsf{Sets}_{*}}$.

The right tensor product of pointed sets satisfies the following natural bijection:

\[ \mathsf{Sets}_{*}(X\rhd Y,Z)\cong \operatorname {\mathrm{Hom}}^{\otimes ,\mathrm{R}}_{\mathsf{Sets}_{*}}(X\times Y,Z). \]

That is to say, the following data are in natural bijection:

  1. 1.

    Pointed maps $f\colon X\rhd Y\to Z$.

  2. 2.

    Maps of sets $f\colon X\times Y\to Z$ satisfying $f(x,y_{0})=z_{0}$ for each $x\in X$.

The right tensor product of pointed sets may be described as follows:

  • The right tensor product of $(X,x_{0})$ and $(Y,y_{0})$ is the pair $((X\rhd Y,x_{0}\rhd y_{0}),\iota )$ consisting of

    • A pointed set $(X\rhd Y,x_{0}\rhd y_{0})$;

    • A right bilinear morphism of pointed sets $\iota \colon (X\times Y,(x_{0},y_{0}))\to X\rhd Y$;

    satisfying the following universal property:

    • (★)
    • Given another such pair $((Z,z_{0}),f)$ consisting of
      • A pointed set $(Z,z_{0})$;

      • A right bilinear morphism of pointed sets $f\colon (X\times Y,(x_{0},y_{0}))\to X\rhd Y$;

      there exists a unique morphism of pointed sets $X\rhd Y\overset {\exists !}{\to }Z$ making the diagram
      commute.

In detail, the right tensor product of $(X,x_{0})$ and $(Y,y_{0})$ is the pointed set $(X\rhd Y,[y_{0}])$ consisting of:

  • The Underlying Set. The set $X\rhd Y$ defined by

    \begin{align*} X\rhd Y & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\lvert X\right\rvert \odot Y\\ & \cong \bigvee _{x\in X}(Y,y_{0}), \end{align*}

    where $\left\lvert X\right\rvert $ denotes the underlying set of $(X,x_{0})$.

  • The Underlying Basepoint. The point $[(x_{0},y_{0})]$ of $\bigvee _{x\in X}(Y,y_{0})$, which is equal to $[(x,y_{0})]$ for any $x\in X$.

Since $\bigvee _{y\in Y}(X,x_{0})$ is defined as the quotient of $\coprod _{x\in X}Y$ by the equivalence relation $R$ generated by declaring $(x,y)\sim (x',y')$ if $y=y'=y_{0}$, we have, by Chapter 10: Conditions on Relations, Unresolved reference, a natural bijection

\[ \mathsf{Sets}_{*}(X\rhd Y,Z) \cong \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}(\coprod _{X\in X}Y,Z), \]

where $\operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}(X\times Y,Z)$ is the set

\[ \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}(\coprod _{x\in X}Y,Z)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ f\in \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}(\coprod _{x\in X}Y,Z)\ \middle |\ \begin{aligned} & \text{for each $x,y\in X$, if}\\ & \text{$(x,y)\sim _{R}(x',y')$, then}\\ & \text{$f(x,y)=f(x',y')$}\end{aligned} \right\} . \]
However, the condition $(x,y)\sim _{R}(x',y')$ only holds when:

  1. 1.

    We have $x=x'$ and $y=y'$.

  2. 2.

    We have $y=y'=y_{0}$.

So, given $f\in \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}(\coprod _{x\in X}Y,Z)$ with a corresponding $\overline{f}\colon X\rhd Y\to Z$, the latter case above implies

\begin{align*} f([(x,y_{0})]) & = f([(x',y_{0})])\\ & = f([(x_{0},y_{0})]), \end{align*}

and since $\overline{f}\colon X\rhd Y\to Z$ is a pointed map, we have

\begin{align*} f([(x_{0},y_{0})]) & = \overline{f}([(x_{0},y_{0})])\\ & = z_{0}. \end{align*}

Thus the elements $f$ in $\operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}(X\times Y,Z)$ are precisely those functions $f\colon X\times Y\to Z$ satisfying the equality

\[ f(x,y_{0})=z_{0} \]

for each $y\in Y$, giving an equality

\[ \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}(X\times Y,Z)=\operatorname {\mathrm{Hom}}^{\otimes ,\mathrm{R}}_{\mathsf{Sets}_{*}}(X\times Y,Z) \]

of sets, which when composed with our earlier isomorphism

\[ \mathsf{Sets}_{*}(X\rhd Y,Z) \cong \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}(X\times Y,Z), \]

gives our desired natural bijection, finishing the proof.

We write1 $x\rhd y$ for the element $[(x,y)]$ of

\[ X\rhd Y\cong \left\lvert X\right\rvert \odot Y. \]


  1. 1Further Notation: Also written $x\rhd _{\mathsf{Sets}_{*}}y$.

Employing the notation introduced in Notation 7.4.1.1.5, we have

\[ x_{0}\rhd y_{0}=x\rhd y_{0} \]

for each $x\in X$, and

\[ x\rhd y_{0}=x'\rhd y_{0} \]

for each $x,x'\in X$.

Let $(X,x_{0})$ and $(Y,y_{0})$ be pointed sets.

  1. 1.

    Functoriality. The assignments $X,Y,(X,Y)\mapsto X\rhd Y$ define functors

    \[ \begin{array}{ccc} X\rhd -\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -\rhd Y\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -_{1}\rhd -_{2}\colon \mkern -15mu & \mathsf{Sets}_{*}\times \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*}. \end{array} \]

    In particular, given pointed maps

    \begin{align*} f & \colon (X,x_{0}) \to (A,a_{0}),\\ g & \colon (Y,y_{0}) \to (B,b_{0}), \end{align*}

    the induced map

    \[ f\rhd g\colon X\rhd Y\to A\rhd B \]

    is given by

    \[ [f\rhd g](x\rhd y)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f(x)\rhd g(y) \]

    for each $x\rhd y\in X\rhd Y$.

  2. 2.

    Adjointness I. We have an adjunction

    witnessed by a bijection of sets

    \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X\rhd Y,Z)\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(Y,[X,Z]^{\rhd }_{\mathsf{Sets}_{*}}) \]

    natural in $(X,x_{0}),(Y,y_{0}),(Z,z_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$, where $[X,Y]^{\rhd }_{\mathsf{Sets}_{*}}$ is the pointed set of Definition 7.4.2.1.1.

  3. 3.

    Adjointness II. The functor

    \[ -\rhd Y\colon \mathsf{Sets}_{*}\to \mathsf{Sets}_{*} \]

    does not admit a right adjoint.

  4. 4.

    Adjointness III. We have a ${\text{忘}}$-relative adjunction

    witnessed by a bijection of sets

    \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X\rhd Y,Z)\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}(|X|,\mathsf{Sets}_{*}(Y,Z)) \]

    natural in $(X,x_{0}),(Y,y_{0}),(Z,z_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$.

Item 1: Functoriality
This follows from the definition of $\rhd $ as a composition of functors (Definition 7.4.1.1.1).

Item 2: Adjointness I
This follows from Item 3 of Proposition 7.2.1.1.6.

Item 3: Adjointness II
For $-\rhd Y$ to admit a right adjoint would require it to preserve colimits by Unresolved reference, Unresolved reference of Unresolved reference. However, we have

\begin{align*} \mathrm{pt}\rhd X & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}|\mathrm{pt}|\odot X\\ & \cong X\\ & \ncong \mathrm{pt}, \end{align*}

and thus we see that $-\rhd Y$ does not have a right adjoint.

Item 4: Adjointness III
This follows from Item 2 of Proposition 7.2.1.1.6.

Here is some intuition on why $-\rhd Y$ fails to be a left adjoint. Item 4 of Proposition 7.3.1.1.7 states that we have a natural bijection

\[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X\rhd Y,Z)\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}(|X|,\mathsf{Sets}_{*}(Y,Z)), \]

so it would be reasonable to wonder whether a natural bijection of the form

\[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X\rhd Y,Z)\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X,\boldsymbol {\mathsf{Sets}}_{*}(Y,Z)), \]

also holds, which would give $-\rhd Y\dashv \boldsymbol {\mathsf{Sets}}_{*}(Y,-)$. However, such a bijection would require every map

\[ f\colon X\rhd Y\to Z \]

to satisfy

\[ f(x_{0}\rhd y)=z_{0} \]

for each $x\in X$, whereas we are imposing such a basepoint preservation condition only for elements of the form $x\rhd y_{0}$. Thus $\boldsymbol {\mathsf{Sets}}_{*}(Y,-)$ can’t be a right adjoint for $-\rhd Y$, and as shown by Item 3 of Proposition 7.4.1.1.7, no functor can.1


  1. 1The functor $\boldsymbol {\mathsf{Sets}}_{*}(Y,-)$ is instead right adjoint to $-\wedge Y$, the smash product of pointed sets of Definition 7.5.1.1.1. See Item 2 of Proposition 7.5.1.1.10.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: