7.4.1 Foundations

    Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets.

    The right tensor product of pointed sets is the functor1

    \[ \rhd \colon \mathsf{Sets}_{*}\times \mathsf{Sets}_{*}\to \mathsf{Sets}_{*} \]

    defined as the composition

    \[ \mathsf{Sets}_{*}\times \mathsf{Sets}_{*}\overset {{\text{忘}}\times \mathsf{id}}{\to }\mathsf{Sets}\times \mathsf{Sets}_{*}\overset {\odot }{\to }\mathsf{Sets}_{*}, \]

    where:

    • ${\text{忘}}\colon \mathsf{Sets}_{*}\to \mathsf{Sets}$ is the forgetful functor from pointed sets to sets.

    • $\odot \colon \mathsf{Sets}\times \mathsf{Sets}_{*}\to \mathsf{Sets}_{*}$ is the tensor functor of Item 1 of Proposition 7.2.1.1.6.


    1. 1Further Notation: Also written $\rhd _{\mathsf{Sets}_{*}}$.

    The right tensor product of pointed sets satisfies the following natural bijection:

    \[ \mathsf{Sets}_{*}\webleft (X\rhd Y,Z\webright )\cong \operatorname {\mathrm{Hom}}^{\otimes ,\mathrm{R}}_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright ). \]

    That is to say, the following data are in natural bijection:

    1. 1.

      Pointed maps $f\colon X\rhd Y\to Z$.

    2. 2.

      Maps of sets $f\colon X\times Y\to Z$ satisfying $f\webleft (x,y_{0}\webright )=z_{0}$ for each $x\in X$.

    The right tensor product of pointed sets may be described as follows:

    • The right tensor product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ is the pair $\webleft (\webleft (X\rhd Y,x_{0}\rhd y_{0}\webright ),\iota \webright )$ consisting of

      • A pointed set $\webleft (X\rhd Y,x_{0}\rhd y_{0}\webright )$;

      • A right bilinear morphism of pointed sets $\iota \colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )\to X\rhd Y$;

      satisfying the following universal property:

      • (★)
      • Given another such pair $\webleft (\webleft (Z,z_{0}\webright ),f\webright )$ consisting of
        • A pointed set $\webleft (Z,z_{0}\webright )$;

        • A right bilinear morphism of pointed sets $f\colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )\to X\rhd Y$;

        there exists a unique morphism of pointed sets $X\rhd Y\overset {\exists !}{\to }Z$ making the diagram
        commute.

    In detail, the right tensor product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ is the pointed set $\webleft (X\rhd Y,\webleft [y_{0}\webright ]\webright )$ consisting of:

    • The Underlying Set. The set $X\rhd Y$ defined by

      \begin{align*} X\rhd Y & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\lvert X\right\rvert \odot Y\\ & \cong \bigvee _{x\in X}\webleft (Y,y_{0}\webright ), \end{align*}

      where $\left\lvert X\right\rvert $ denotes the underlying set of $\webleft (X,x_{0}\webright )$.

    • The Underlying Basepoint. The point $\webleft [\webleft (x_{0},y_{0}\webright )\webright ]$ of $\bigvee _{x\in X}\webleft (Y,y_{0}\webright )$, which is equal to $\webleft [\webleft (x,y_{0}\webright )\webright ]$ for any $x\in X$.

    Since $\bigvee _{y\in Y}\webleft (X,x_{0}\webright )$ is defined as the quotient of $\coprod _{x\in X}Y$ by the equivalence relation $R$ generated by declaring $\webleft (x,y\webright )\sim \webleft (x',y'\webright )$ if $y=y'=y_{0}$, we have, by Chapter 10: Conditions on Relations, Unresolved reference, a natural bijection

    \[ \mathsf{Sets}_{*}\webleft (X\rhd Y,Z\webright ) \cong \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (\coprod _{X\in X}Y,Z\webright ), \]

    where $\operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )$ is the set

    \[ \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (\coprod _{x\in X}Y,Z\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ f\in \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (\coprod _{x\in X}Y,Z\webright )\ \middle |\ \begin{aligned} & \text{for each $x,y\in X$, if}\\ & \text{$\webleft (x,y\webright )\sim _{R}\webleft (x',y'\webright )$, then}\\ & \text{$f\webleft (x,y\webright )=f\webleft (x',y'\webright )$}\end{aligned} \right\} . \]
    However, the condition $\webleft (x,y\webright )\sim _{R}\webleft (x',y'\webright )$ only holds when:

    1. 1.

      We have $x=x'$ and $y=y'$.

  • 2.

    We have $y=y'=y_{0}$.

  • So, given $f\in \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (\coprod _{x\in X}Y,Z\webright )$ with a corresponding $\overline{f}\colon X\rhd Y\to Z$, the latter case above implies

    \begin{align*} f\webleft (\webleft [\webleft (x,y_{0}\webright )\webright ]\webright ) & = f\webleft (\webleft [\webleft (x',y_{0}\webright )\webright ]\webright )\\ & = f\webleft (\webleft [\webleft (x_{0},y_{0}\webright )\webright ]\webright ), \end{align*}

    and since $\overline{f}\colon X\rhd Y\to Z$ is a pointed map, we have

    \begin{align*} f\webleft (\webleft [\webleft (x_{0},y_{0}\webright )\webright ]\webright ) & = \overline{f}\webleft (\webleft [\webleft (x_{0},y_{0}\webright )\webright ]\webright )\\ & = z_{0}. \end{align*}

    Thus the elements $f$ in $\operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )$ are precisely those functions $f\colon X\times Y\to Z$ satisfying the equality

    \[ f\webleft (x,y_{0}\webright )=z_{0} \]

    for each $y\in Y$, giving an equality

    \[ \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )=\operatorname {\mathrm{Hom}}^{\otimes ,\mathrm{R}}_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright ) \]

    of sets, which when composed with our earlier isomorphism

    \[ \mathsf{Sets}_{*}\webleft (X\rhd Y,Z\webright ) \cong \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright ), \]

    gives our desired natural bijection, finishing the proof.

    We write1 $x\rhd y$ for the element $\webleft [\webleft (x,y\webright )\webright ]$ of

    \[ X\rhd Y\cong \left\lvert X\right\rvert \odot Y. \]


    1. 1Further Notation: Also written $x\rhd _{\mathsf{Sets}_{*}}y$.

    Employing the notation introduced in Notation 7.4.1.1.5, we have

    \[ x_{0}\rhd y_{0}=x\rhd y_{0} \]

    for each $x\in X$, and

    \[ x\rhd y_{0}=x'\rhd y_{0} \]

    for each $x,x'\in X$.

    Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets.

    1. 1.

      Functoriality. The assignments $X,Y,\webleft (X,Y\webright )\mapsto X\rhd Y$ define functors

      \[ \begin{array}{ccc} X\rhd -\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -\rhd Y\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -_{1}\rhd -_{2}\colon \mkern -15mu & \mathsf{Sets}_{*}\times \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*}. \end{array} \]

      In particular, given pointed maps

      \begin{align*} f & \colon \webleft (X,x_{0}\webright ) \to \webleft (A,a_{0}\webright ),\\ g & \colon \webleft (Y,y_{0}\webright ) \to \webleft (B,b_{0}\webright ), \end{align*}

      the induced map

      \[ f\rhd g\colon X\rhd Y\to A\rhd B \]

      is given by

      \[ \webleft [f\rhd g\webright ]\webleft (x\rhd y\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x\webright )\rhd g\webleft (y\webright ) \]

      for each $x\rhd y\in X\rhd Y$.

    2. 2.

      Adjointness I. We have an adjunction

      witnessed by a bijection of sets

      \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X\rhd Y,Z\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (Y,\webleft [X,Z\webright ]^{\rhd }_{\mathsf{Sets}_{*}}\webright ) \]

      natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$, where $\webleft [X,Y\webright ]^{\rhd }_{\mathsf{Sets}_{*}}$ is the pointed set of Definition 7.4.2.1.1.

    3. 3.

      Adjointness II. The functor

      \[ -\rhd Y\colon \mathsf{Sets}_{*}\to \mathsf{Sets}_{*} \]

      does not admit a right adjoint.

    4. 4.

      Adjointness III. We have a ${\text{忘}}$-relative adjunction

      witnessed by a bijection of sets

      \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X\rhd Y,Z\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (|X|,\mathsf{Sets}_{*}\webleft (Y,Z\webright )\webright ) \]

      natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$.

    Item 1: Functoriality
    This follows from the definition of $\rhd $ as a composition of functors (Definition 7.4.1.1.1).

    Item 2: Adjointness I
    This follows from Item 3 of Proposition 7.2.1.1.6.

    Item 3: Adjointness II
    For $-\rhd Y$ to admit a right adjoint would require it to preserve colimits by Unresolved reference, Unresolved reference of Unresolved reference. However, we have

    \begin{align*} \mathrm{pt}\rhd X & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}|\mathrm{pt}|\odot X\\ & \cong X\\ & \ncong \mathrm{pt}, \end{align*}

    and thus we see that $-\rhd Y$ does not have a right adjoint.

    Item 4: Adjointness III
    This follows from Item 2 of Proposition 7.2.1.1.6.

    Here is some intuition on why $-\rhd Y$ fails to be a left adjoint. Item 4 of Proposition 7.3.1.1.7 states that we have a natural bijection

    \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X\rhd Y,Z\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (|X|,\mathsf{Sets}_{*}\webleft (Y,Z\webright )\webright ), \]

    so it would be reasonable to wonder whether a natural bijection of the form

    \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X\rhd Y,Z\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X,\boldsymbol {\mathsf{Sets}}_{*}\webleft (Y,Z\webright )\webright ), \]

    also holds, which would give $-\rhd Y\dashv \boldsymbol {\mathsf{Sets}}_{*}\webleft (Y,-\webright )$. However, such a bijection would require every map

    \[ f\colon X\rhd Y\to Z \]

    to satisfy

    \[ f\webleft (x_{0}\rhd y\webright )=z_{0} \]

    for each $x\in X$, whereas we are imposing such a basepoint preservation condition only for elements of the form $x\rhd y_{0}$. Thus $\boldsymbol {\mathsf{Sets}}_{*}\webleft (Y,-\webright )$ can’t be a right adjoint for $-\rhd Y$, and as shown by Item 3 of Proposition 7.4.1.1.7, no functor can.1


    1. 1The functor $\boldsymbol {\mathsf{Sets}}_{*}\webleft (Y,-\webright )$ is instead right adjoint to $-\wedge Y$, the smash product of pointed sets of Definition 7.5.1.1.1. See Item 2 of Proposition 7.5.1.1.10.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: