7.4.1 Foundations

    Let $(X,x_{0})$ and $(Y,y_{0})$ be pointed sets.

    The right tensor product of pointed sets is the functor1

    \[ \rhd \colon \mathsf{Sets}_{*}\times \mathsf{Sets}_{*}\to \mathsf{Sets}_{*} \]

    defined as the composition

    \[ \mathsf{Sets}_{*}\times \mathsf{Sets}_{*}\overset {{\text{忘}}\times \mathsf{id}}{\to }\mathsf{Sets}\times \mathsf{Sets}_{*}\overset {\odot }{\to }\mathsf{Sets}_{*}, \]

    where:

    • ${\text{忘}}\colon \mathsf{Sets}_{*}\to \mathsf{Sets}$ is the forgetful functor from pointed sets to sets.

    • $\odot \colon \mathsf{Sets}\times \mathsf{Sets}_{*}\to \mathsf{Sets}_{*}$ is the tensor functor of Item 1 of Proposition 7.2.1.1.6.


    1. 1Further Notation: Also written $\rhd _{\mathsf{Sets}_{*}}$.

    The right tensor product of pointed sets satisfies the following natural bijection:

    \[ \mathsf{Sets}_{*}(X\rhd Y,Z)\cong \operatorname {\mathrm{Hom}}^{\otimes ,\mathrm{R}}_{\mathsf{Sets}_{*}}(X\times Y,Z). \]

    That is to say, the following data are in natural bijection:

    1. 1.

      Pointed maps $f\colon X\rhd Y\to Z$.

    2. 2.

      Maps of sets $f\colon X\times Y\to Z$ satisfying $f(x,y_{0})=z_{0}$ for each $x\in X$.

    The right tensor product of pointed sets may be described as follows:

    • The right tensor product of $(X,x_{0})$ and $(Y,y_{0})$ is the pair $((X\rhd Y,x_{0}\rhd y_{0}),\iota )$ consisting of

      • A pointed set $(X\rhd Y,x_{0}\rhd y_{0})$;

      • A right bilinear morphism of pointed sets $\iota \colon (X\times Y,(x_{0},y_{0}))\to X\rhd Y$;

      satisfying the following universal property:

      • (★)
      • Given another such pair $((Z,z_{0}),f)$ consisting of
        • A pointed set $(Z,z_{0})$;

        • A right bilinear morphism of pointed sets $f\colon (X\times Y,(x_{0},y_{0}))\to X\rhd Y$;

        there exists a unique morphism of pointed sets $X\rhd Y\overset {\exists !}{\to }Z$ making the diagram
        commute.

    In detail, the right tensor product of $(X,x_{0})$ and $(Y,y_{0})$ is the pointed set $(X\rhd Y,[y_{0}])$ consisting of:

    • The Underlying Set. The set $X\rhd Y$ defined by

      \begin{align*} X\rhd Y & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\lvert X\right\rvert \odot Y\\ & \cong \bigvee _{x\in X}(Y,y_{0}), \end{align*}

      where $\left\lvert X\right\rvert $ denotes the underlying set of $(X,x_{0})$.

    • The Underlying Basepoint. The point $[(x_{0},y_{0})]$ of $\bigvee _{x\in X}(Y,y_{0})$, which is equal to $[(x,y_{0})]$ for any $x\in X$.

    Since $\bigvee _{y\in Y}(X,x_{0})$ is defined as the quotient of $\coprod _{x\in X}Y$ by the equivalence relation $R$ generated by declaring $(x,y)\sim (x',y')$ if $y=y'=y_{0}$, we have, by Chapter 10: Conditions on Relations, Unresolved reference, a natural bijection

    \[ \mathsf{Sets}_{*}(X\rhd Y,Z) \cong \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}(\coprod _{X\in X}Y,Z), \]

    where $\operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}(X\times Y,Z)$ is the set

    \[ \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}(\coprod _{x\in X}Y,Z)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ f\in \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}(\coprod _{x\in X}Y,Z)\ \middle |\ \begin{aligned} & \text{for each $x,y\in X$, if}\\ & \text{$(x,y)\sim _{R}(x',y')$, then}\\ & \text{$f(x,y)=f(x',y')$}\end{aligned} \right\} . \]
    However, the condition $(x,y)\sim _{R}(x',y')$ only holds when:

  • 1.

    We have $x=x'$ and $y=y'$.

  • 2.

    We have $y=y'=y_{0}$.

  • So, given $f\in \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}(\coprod _{x\in X}Y,Z)$ with a corresponding $\overline{f}\colon X\rhd Y\to Z$, the latter case above implies

    \begin{align*} f([(x,y_{0})]) & = f([(x',y_{0})])\\ & = f([(x_{0},y_{0})]), \end{align*}

    and since $\overline{f}\colon X\rhd Y\to Z$ is a pointed map, we have

    \begin{align*} f([(x_{0},y_{0})]) & = \overline{f}([(x_{0},y_{0})])\\ & = z_{0}. \end{align*}

    Thus the elements $f$ in $\operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}(X\times Y,Z)$ are precisely those functions $f\colon X\times Y\to Z$ satisfying the equality

    \[ f(x,y_{0})=z_{0} \]

    for each $y\in Y$, giving an equality

    \[ \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}(X\times Y,Z)=\operatorname {\mathrm{Hom}}^{\otimes ,\mathrm{R}}_{\mathsf{Sets}_{*}}(X\times Y,Z) \]

    of sets, which when composed with our earlier isomorphism

    \[ \mathsf{Sets}_{*}(X\rhd Y,Z) \cong \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}(X\times Y,Z), \]

    gives our desired natural bijection, finishing the proof.

    We write1 $x\rhd y$ for the element $[(x,y)]$ of

    \[ X\rhd Y\cong \left\lvert X\right\rvert \odot Y. \]


    1. 1Further Notation: Also written $x\rhd _{\mathsf{Sets}_{*}}y$.

    Employing the notation introduced in Notation 7.4.1.1.5, we have

    \[ x_{0}\rhd y_{0}=x\rhd y_{0} \]

    for each $x\in X$, and

    \[ x\rhd y_{0}=x'\rhd y_{0} \]

    for each $x,x'\in X$.

    Let $(X,x_{0})$ and $(Y,y_{0})$ be pointed sets.

    1. 1.

      Functoriality. The assignments $X,Y,(X,Y)\mapsto X\rhd Y$ define functors

      \[ \begin{array}{ccc} X\rhd -\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -\rhd Y\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -_{1}\rhd -_{2}\colon \mkern -15mu & \mathsf{Sets}_{*}\times \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*}. \end{array} \]

      In particular, given pointed maps

      \begin{align*} f & \colon (X,x_{0}) \to (A,a_{0}),\\ g & \colon (Y,y_{0}) \to (B,b_{0}), \end{align*}

      the induced map

      \[ f\rhd g\colon X\rhd Y\to A\rhd B \]

      is given by

      \[ [f\rhd g](x\rhd y)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f(x)\rhd g(y) \]

      for each $x\rhd y\in X\rhd Y$.

    2. 2.

      Adjointness I. We have an adjunction

      witnessed by a bijection of sets

      \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X\rhd Y,Z)\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(Y,[X,Z]^{\rhd }_{\mathsf{Sets}_{*}}) \]

      natural in $(X,x_{0}),(Y,y_{0}),(Z,z_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$, where $[X,Y]^{\rhd }_{\mathsf{Sets}_{*}}$ is the pointed set of Definition 7.4.2.1.1.

    3. 3.

      Adjointness II. The functor

      \[ -\rhd Y\colon \mathsf{Sets}_{*}\to \mathsf{Sets}_{*} \]

      does not admit a right adjoint.

    4. 4.

      Adjointness III. We have a ${\text{忘}}$-relative adjunction

      witnessed by a bijection of sets

      \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X\rhd Y,Z)\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}(|X|,\mathsf{Sets}_{*}(Y,Z)) \]

      natural in $(X,x_{0}),(Y,y_{0}),(Z,z_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$.

    Item 1: Functoriality
    This follows from the definition of $\rhd $ as a composition of functors (Definition 7.4.1.1.1).

    Item 2: Adjointness I
    This follows from Item 3 of Proposition 7.2.1.1.6.

    Item 3: Adjointness II
    For $-\rhd Y$ to admit a right adjoint would require it to preserve colimits by Unresolved reference, Unresolved reference of Unresolved reference. However, we have

    \begin{align*} \mathrm{pt}\rhd X & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}|\mathrm{pt}|\odot X\\ & \cong X\\ & \ncong \mathrm{pt}, \end{align*}

    and thus we see that $-\rhd Y$ does not have a right adjoint.

    Item 4: Adjointness III
    This follows from Item 2 of Proposition 7.2.1.1.6.

    Here is some intuition on why $-\rhd Y$ fails to be a left adjoint. Item 4 of Proposition 7.3.1.1.7 states that we have a natural bijection

    \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X\rhd Y,Z)\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}(|X|,\mathsf{Sets}_{*}(Y,Z)), \]

    so it would be reasonable to wonder whether a natural bijection of the form

    \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X\rhd Y,Z)\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X,\boldsymbol {\mathsf{Sets}}_{*}(Y,Z)), \]

    also holds, which would give $-\rhd Y\dashv \boldsymbol {\mathsf{Sets}}_{*}(Y,-)$. However, such a bijection would require every map

    \[ f\colon X\rhd Y\to Z \]

    to satisfy

    \[ f(x_{0}\rhd y)=z_{0} \]

    for each $x\in X$, whereas we are imposing such a basepoint preservation condition only for elements of the form $x\rhd y_{0}$. Thus $\boldsymbol {\mathsf{Sets}}_{*}(Y,-)$ can’t be a right adjoint for $-\rhd Y$, and as shown by Item 3 of Proposition 7.4.1.1.7, no functor can.1


    1. 1The functor $\boldsymbol {\mathsf{Sets}}_{*}(Y,-)$ is instead right adjoint to $-\wedge Y$, the smash product of pointed sets of Definition 7.5.1.1.1. See Item 2 of Proposition 7.5.1.1.10.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: