Let $X$ be a set.
The discrete category on $X$ is the category $X_{\mathsf{disc}}$ where
Objects. We have
Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{disc}}\webright )$, we have
Identities. For each $A\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{disc}}\webright )$, the unit map
of $X_{\mathsf{disc}}$ at $A$ is defined by
Composition. For each $A,B,C\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{disc}}\webright )$, the composition map
of $X_{\mathsf{disc}}$ at $\webleft (A,B,C\webright )$ is defined by
A category $\mathcal{C}$ is discrete if it is equivalent to $X_{\mathsf{disc}}$ for some set $X$.
Let $X$ be a set.
Functoriality. The assignment $X\mapsto X_{\mathsf{disc}}$ defines a functor
Adjointness. We have a quadruple adjunction
Symmetric Strong Monoidality With Respect to Coproducts. The functor of Item 1 has a symmetric strong monoidal structure
being equipped with isomorphisms
natural in $X,Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.
Symmetric Strong Monoidality With Respect to Products. The functor of Item 1 has a symmetric strong monoidal structure
being equipped with isomorphisms
natural in $X,Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$.