Let $X$ be a set.
-
1.
The discrete category on $X$ is the category $X_{\mathsf{disc}}$ where
-
•
Objects. We have
\[ \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{disc}}\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X. \] -
•
Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{disc}}\webright )$, we have
\[ \operatorname {\mathrm{Hom}}_{X_{\mathsf{disc}}}\webleft (A,B\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \operatorname {\mathrm{id}}_{A} & \text{if $A=B$,}\\ \text{Ø}& \text{if $A\neq B$.} \end{cases} \] -
•
Identities. For each $A\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{disc}}\webright )$, the unit map
\[ \mathbb {1}^{X_{\mathsf{disc}}}_{A} \colon \mathrm{pt}\to \operatorname {\mathrm{Hom}}_{X_{\mathsf{disc}}}\webleft (A,A\webright ) \]of $X_{\mathsf{disc}}$ at $A$ is defined by
\[ \operatorname {\mathrm{id}}^{X_{\mathsf{disc}}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{A}. \] -
•
Composition. For each $A,B,C\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{disc}}\webright )$, the composition map
\[ \circ ^{X_{\mathsf{disc}}}_{A,B,C} \colon \operatorname {\mathrm{Hom}}_{X_{\mathsf{disc}}}\webleft (B,C\webright ) \times \operatorname {\mathrm{Hom}}_{X_{\mathsf{disc}}}\webleft (A,B\webright ) \to \operatorname {\mathrm{Hom}}_{X_{\mathsf{disc}}}\webleft (A,C\webright ) \]of $X_{\mathsf{disc}}$ at $\webleft (A,B,C\webright )$ is defined by
\[ \operatorname {\mathrm{id}}_{A}\circ \operatorname {\mathrm{id}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{A}. \]
-
•