11.6.7 Equivalences of Categories

    Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

    1. 1.

      An equivalence of categories between $\mathcal{C}$ and $\mathcal{D}$ consists of a pair of functors

      \begin{align*} F & \colon \mathcal{C}\to \mathcal{D},\\ G & \colon \mathcal{D}\to \mathcal{C} \end{align*}

      together with natural isomorphisms

      \begin{align*} \eta & \colon \operatorname {\mathrm{id}}_{\mathcal{C}} \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}G\circ F,\\ \epsilon & \colon F\circ G \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}\operatorname {\mathrm{id}}_{\mathcal{D}}. \end{align*}
    2. 2.

      An adjoint equivalence of categories between $\mathcal{C}$ and $\mathcal{D}$ is an equivalence $\webleft (F,G,\eta ,\epsilon \webright )$ between $\mathcal{C}$ and $\mathcal{D}$ which is also an adjunction.

    Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

    1. 1.

      Characterisations. If $\mathcal{C}$ and $\mathcal{D}$ are small1, then the following conditions are equivalent:2

      1. (a)

        The functor $F$ is an equivalence of categories.

      2. (b)

        The functor $F$ is fully faithful and essentially surjective.

      3. (c)

        The induced functor

        \[ \left.F\right\vert _{\mathsf{Sk}\webleft (\mathcal{C}\webright )}\colon \mathsf{Sk}\webleft (\mathcal{C}\webright )\to \mathsf{Sk}\webleft (\mathcal{D}\webright ) \]

        is an isomorphism of categories.

      4. (d)

        For each $X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the precomposition functor

        \[ F^{*}\colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )\to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

        is an equivalence of categories.

      5. (e)

        For each $X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the postcomposition functor

        \[ F_{*}\colon \mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright )\to \mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright ) \]

        is an equivalence of categories.

  • 2.

    Two-Out-of-Three. Let

    be a diagram in $\mathsf{Cats}$. If two out of the three functors among $F$, $G$, and $G\circ F$ are equivalences of categories, then so is the third.

  • 3.

    Stability Under Composition. Let

    be a diagram in $\mathsf{Cats}$. If $\webleft (F,G\webright )$ and $\webleft (F',G'\webright )$ are equivalences of categories, then so is their composite $\webleft (F'\circ F,G'\circ G\webright )$.

  • 4.

    Equivalences vs.Adjoint Equivalences. Every equivalence of categories can be promoted to an adjoint equivalence.3

  • 5.

    Interaction With Groupoids. If $\mathcal{C}$ and $\mathcal{D}$ are groupoids, then the following conditions are equivalent:

    1. (a)

      The functor $F$ is an equivalence of groupoids.

    2. (b)

      The following conditions are satisfied:

      1. (i)

        The functor $F$ induces a bijection

        \[ \pi _{0}\webleft (F\webright )\colon \pi _{0}\webleft (\mathcal{C}\webright )\to \pi _{0}\webleft (\mathcal{D}\webright ) \]

        of sets.

      2. (ii)

        For each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the induced map

        \[ F_{x,x}\colon \mathrm{Aut}_{\mathcal{C}}\webleft (A\webright )\to \mathrm{Aut}_{\mathcal{D}}\webleft (F_{A}\webright ) \]

        is an isomorphism of groups.


    1. 1Otherwise there will be size issues. One can also work with large categories and universes, or require $F$ to be constructively essentially surjective; see [kilian, Equivalence of categories and axiom of choice].
    2. 2In ZFC, the equivalence between Item 1a and Item 1b is equivalent to the axiom of choice; see [user30818, Category and the axiom of choice]. In Univalent Foundations, this is true without requiring neither the axiom of choice nor the law of excluded middle.
    3. 3More precisely, we can promote an equivalence of categories $\webleft (F,G,\eta ,\epsilon \webright )$ to adjoint equivalences $\webleft (F,G,\eta ',\epsilon \webright )$ and $\webleft (F,G,\eta ,\epsilon '\webright )$.

    Item 1: Characterisations
    We claim that Item 1a, Item 1b, Item 1c, Item 1d, and Item 1e are indeed equivalent:

    1. 1.

      Item 1a$\implies $Item 1b: Clear.

    2. 2.

      Item 1b$\implies $Item 1a: Since $F$ is essentially surjective and $\mathcal{C}$ and $\mathcal{D}$ are small, we can choose, using the axiom of choice, for each $B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{D}\webright )$, an object $j_{B}$ of $\mathcal{C}$ and an isomorphism $i_{B}\colon B\to F_{j_{B}}$ of $\mathcal{D}$.

      Since $F$ is fully faithful, we can extend the assignment $B\mapsto j_{B}$ to a unique functor $j\colon \mathcal{D}\to \mathcal{C}$ such that the isomorphisms $i_{B}\colon B\to F_{j_{B}}$ assemble into a natural isomorphism $\eta \colon \operatorname {\mathrm{id}}_{\mathcal{D}}\mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}F\circ j$, with a similar natural isomorphism $\epsilon \colon \operatorname {\mathrm{id}}_{\mathcal{C}}\mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}j\circ F$. Hence $F$ is an equivalence.

    3. 3.

      Item 1a$\implies $Item 1c: This follows from Item 4 of Proposition 11.1.3.1.3.

    4. 4.

      Item 1c$\implies $Item 1a: Omitted.

    5. 5.

      Item 1a, Item 1d, and Item 1e Are Equivalent: This follows from Unresolved reference.

    This finishes the proof of Item 1.

    Item 2: Two-Out-of-Three
    Omitted.

    Item 3: Stability Under Composition
    Clear.

    Item 4: Equivalences vs.Adjoint Equivalences
    See Proposition 4.4.5 of [Riehl, Category Theory in Context].

    Item 5: Interaction With Groupoids
    See Proposition 4.4 of [nLab Authors, Groupoid].


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: