11.6.7 Equivalences of Categories

    Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

    1. 1.

      An equivalence of categories between $\mathcal{C}$ and $\mathcal{D}$ consists of a pair of functors

      \begin{align*} F & \colon \mathcal{C}\to \mathcal{D},\\ G & \colon \mathcal{D}\to \mathcal{C} \end{align*}

      together with natural isomorphisms

      \begin{align*} \eta & \colon \operatorname {\mathrm{id}}_{\mathcal{C}} \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}G\circ F,\\ \epsilon & \colon F\circ G \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}\operatorname {\mathrm{id}}_{\mathcal{D}}. \end{align*}
    2. 2.

      An adjoint equivalence of categories between $\mathcal{C}$ and $\mathcal{D}$ is an equivalence $(F,G,\eta ,\epsilon )$ between $\mathcal{C}$ and $\mathcal{D}$ which is also an adjunction.

    Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

    1. 1.

      Characterisations. If $\mathcal{C}$ and $\mathcal{D}$ are small, then the following conditions are equivalent:1

      1. (a)

        The functor $F$ is an equivalence of categories.

      2. (b)

        The functor $F$ is fully faithful and essentially surjective.

      3. (c)

        The induced functor

        \[ \left.F\right\vert _{\mathsf{Sk}(\mathcal{C})}\colon \mathsf{Sk}(\mathcal{C})\to \mathsf{Sk}(\mathcal{D}) \]

        is an isomorphism of categories.

      4. (d)

        For each $X\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the precomposition functor

        \[ F^{*}\colon \mathsf{Fun}(\mathcal{D},\mathcal{X})\to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

        is an equivalence of categories.

      5. (e)

        For each $X\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the postcomposition functor

        \[ F_{*}\colon \mathsf{Fun}(\mathcal{X},\mathcal{C})\to \mathsf{Fun}(\mathcal{X},\mathcal{D}) \]

        is an equivalence of categories.

    2. 2.

      Invariance Under Natural Isomorphism. If $F$ is (part of) an equivalence of categories and $F\cong F'$, then so is $F'$.

    3. 3.

      Inverses. If $(F,G,\eta ,\epsilon )$ is an equivalence, then so is $(G,F,\epsilon ^{-1},\eta ^{-1})$.

    4. 4.

      Two-Out-of-Three. Let

      be a diagram in $\mathsf{Cats}$. If two out of the three functors among $F$, $G$, and $G\circ F$ are equivalences of categories, then so is the third.

    5. 5.

      Stability Under Composition. Let

      be a diagram in $\mathsf{Cats}$. If $(F,G)$ and $(F',G')$ are equivalences of categories, then so is their composite $(F'\circ F,G'\circ G)$.

    6. 6.

      Equivalences vs. Adjoint Equivalences. Every equivalence of categories can be promoted to an adjoint equivalence.2

    7. 7.

      Equivalences of Groupoids. Let $F\colon \mathcal{G}\to \mathcal{H}$ be a functor between groupoids. The following conditions are equivalent:

      1. (a)

        The functor $F\colon \mathcal{G}\to \mathcal{H}$ is an equivalence of groupoids.

  • (b)

    The following conditions are satisfied:

    1. (i)

      The functor $F$ induces a bijection

      \[ \pi _{0}(F)\colon \pi _{0}(\mathcal{G})\to \pi _{0}(\mathcal{H}) \]

      of sets.

    2. (ii)

      For each $x\in \operatorname {\mathrm{Obj}}(\mathcal{G})$, the action on morphisms

      \[ F_{x,x}\colon \mathrm{Aut}_{\mathcal{G}}(x)\to \mathrm{Aut}_{\mathcal{H}}(F_{x}) \]

      of $F$ at $(x,x)$ is an isomorphism of groups.


    1. 1There are some foundational issues that are relevant here; see Remark 11.6.7.1.3 below.
    2. 2More precisely, we can promote an equivalence of categories $(F,G,\eta ,\epsilon )$ to adjoint equivalences $(F,G,\eta ',\epsilon )$ and $(F,G,\eta ,\epsilon ')$.

    Item 1: Characterisations
    We proceed by showing:

    Item 1a$\implies $Item 1b
    Let $F\colon \mathcal{C}\to \mathcal{D}$ be an equivalence with inverse $G\colon \mathcal{D}\to \mathcal{E}$, and write $GF\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}G\circ F$. We claim that $F$ is full, faithful, and essentially surjective:

    • Faithfulness: Let $f,g\in \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B)$ with $F(f)=F(g)$. Then $GF(f)=GF(g)$ and we have the following diagrams:

      Since $\eta ^{-1}$ is natural, these commute. We then have

      \begin{align*} f\circ \eta ^{-1}_{A} & = \eta ^{-1}_{B}\circ GF(f)\\ & = \eta ^{-1}_{B}\circ GF(g)\\ & = g\circ \eta ^{-1}_{A}. \end{align*}

      Precomposing both sides with $\eta _{A}$ then gives $f=g$, showing $F$ to be faithful.

    • Fullness: Given $f\in \operatorname {\mathrm{Hom}}_{\mathcal{D}}(F(A),F(B))$, define a morphism $h\colon A\to B$ by

      \[ h\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\eta ^{-1}_{B}\circ G(f)\circ \eta _{A}, \]

      yielding the commutative diagram

      We must show $F(h) = f$. Since $(G,F,\epsilon ^{-1},\eta ^{-1})$ is also an equivalence due to Item 3, the functor $G$ is faithful, so it suffices to show $GF(h) = G(f)$.

      From the naturality of $\eta $ applied to $\eta _{A}\colon A\to GF(A)$, we have

      for all $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$. Since $\eta $ is an isomorphism, this implies $\eta _{GF(A)} = GF(\eta _{A})$.

      By applying $GF$ to the diagram $(\dagger )$ and incorporating the equality, we see that the diagram

      must commute. By naturality of $\eta $, so does the diagram
      We then have

      \begin{align*} \eta _{GF(B)}\circ GF(h) & = GFG(f)\circ \eta _{GF(A)}\\ & = \eta _{GF(B)}\circ G(f). \end{align*}

      Postcomposing with $\eta ^{-1}_{GF(B)}$ then gives $GF(h) = G(f)$. This shows $F$ to be full.

    • Essential surjectivity: Let $B\in \operatorname {\mathrm{Obj}}(\mathcal{D})$. We need to find some $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$ with $F(A)\cong B$. Choose $A\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}G(B)$. Then $\epsilon _{B}\colon FG(B)\to B$ is an isomorphism by assumption. Hence $F$ is essentially surjective.

    Item 1b$\implies $Item 1a
    Since $F$ is essentially surjective and $\mathcal{C}$ and $\mathcal{D}$ are small, we can choose, using the axiom of choice, for each $B\in \operatorname {\mathrm{Obj}}(\mathcal{D})$, an object $j_{B}$ of $\mathcal{C}$ and an isomorphism $i_{B}\colon B\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }F(j_{B})$ of $\mathcal{D}$.

    Since $F$ is fully faithful, we can extend the assignment $B\mapsto j_{B}$ to a unique functor $j\colon \mathcal{D}\to \mathcal{C}$ such that the isomorphisms $i_{B}\colon B\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }F(j_{B})$ assemble into a natural isomorphism $\eta \colon \operatorname {\mathrm{id}}_{\mathcal{D}}\mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}F\circ j$, with a similar natural isomorphism $\epsilon \colon \operatorname {\mathrm{id}}_{\mathcal{C}}\mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}j\circ F$. Hence $F$ is an equivalence.

    Item 1a$\implies $Item 1c
    This follows from Item 4 of Proposition 11.1.3.1.3.

    Item 1c$\implies $Item 1a
    This follows from Item 4 of Proposition 11.1.3.1.3 and Item 5 of this proposition.

    Item 1a$\iff $Item 1d$\iff $Item 1e
    Omitted.

    Item 2: Invariance Under Natural Isomorphism
    Omitted.

    Item 3: Inverses
    The result follows from the fact that

    \begin{align*} \epsilon ^{-1} & \colon \operatorname {\mathrm{id}}_{\mathcal{D}} \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}F \circ G,\\ \eta ^{-1} & \colon G\circ F \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}\operatorname {\mathrm{id}}_{\mathcal{C}} \end{align*}

    are natural isomorphisms iff $\epsilon $ and $\eta $ are.

    Item 4: Two-Out-of-Three
    Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors.

    • When $F$ and $G$ Are Equivalences: By Item 5, if $F$ and $G$ are equivalences, then so is $G\circ F$.

    • When $G$ and $G\circ F$ Are Equivalences: If $G\circ F$ and $G$ are equivalences, note that by Item 5 and Item 3, so are $G^{-1}$ and $G^{-1}\circ G\circ F\cong F$. Therefore $F$ will be an equivalence by Item 2.

    • When $F$ and $G\circ F$ Are Equivalences: If $G\circ F$ and $F$ are equivalences, so are $F^{-1}$ and $G\circ F\circ F^{-1}\cong G$ by Item 5 and Item 3. Therefore $G$ will be an equivalence by Item 2.

    This finishes the proof.

    Item 5: Stability Under Composition
    Assume $(F,G,\eta ,\epsilon )$ and $(F',G',\eta ',\epsilon ')$ are equivalences as in the theorem statement. Define a natural transformation

    \[ \eta ^{\circ }\colon \operatorname {\mathrm{id}}_{\mathcal{C}}\Longrightarrow (G\circ G')\circ (F'\circ F) \]

    as the composition

    and a natural transformation

    \[ \epsilon ^{\circ } \colon (F'\circ F)\circ (G\circ G')\Longrightarrow \operatorname {\mathrm{id}}_{\mathcal{E}} \]

    as the composition

    In other words, define

    \begin{align*} \eta ^{\circ } & = (\operatorname {\mathrm{id}}_{G}\mathbin {\star }\eta '\mathbin {\star }\operatorname {\mathrm{id}}_{F})\circ \eta ,\\ \epsilon ^{\circ } & = \epsilon ’\circ (\operatorname {\mathrm{id}}_{F'}\mathbin {\star }\epsilon \mathbin {\star }\operatorname {\mathrm{id}}_{G'}),\end{align*}

    so that the components of $\eta ^{\circ }$ and $\epsilon ^{\circ }$ are of the form

    \begin{align*} \eta ^{\circ }_{A} & = G(\eta '_{F(A)})\circ \eta _{A},\\ \epsilon ^{\circ }_{A} & = \epsilon ’_{A}\circ F’(\epsilon _{G'(A)}).\end{align*}

    Since $\eta ^{\circ }$ and $\epsilon ^{\circ }$ are compositions of whiskerings of natural isomorphisms, they are natural transformations by Definition 11.9.5.1.2 and natural isomorphisms by Item 5b and Item 5c of Item 5 of Proposition 11.9.5.1.3.

    Thus, $(F'\circ F,G\circ G',\eta ^{\circ },\epsilon ^{\circ })$ is an equivalence.

    Item 6: Equivalences vs. Adjoint Equivalences
    See Proposition 4.4.5 of [Riehl, Category Theory in Context].

    Item 7: Equivalences of Groupoids
    See Proposition 4.4 of [nLab Authors, Groupoid].

    The equivalence between Item 1a and Item 1b of Item 1 of Proposition 11.6.7.1.2 — i.e. that $F$ is an equivalence of categories iff it is fully faithful and essentially surjective — depend on which foundations of mathematics one uses.1

    1. 1.

      Dependence on the Axiom of Choice. Given a functor $F\colon \mathcal{C}\to \mathcal{D}$ that is fully faithful essentially surjective and an object $B$ of $\mathcal{D}$, the set

      \[ \left\{ A\in \operatorname {\mathrm{Obj}}(\mathcal{C})\ \middle |\ F(A)\cong B\right\} \]

      will in general have more than one element. To construct the inverse $F^{-1}$ of $F$, we will therefore have to choose one element from this set for each $B\in \operatorname {\mathrm{Obj}}(\mathcal{D})$. This requires the axiom of choice.

    2. 2.

      Size Issues. In ZFC, Item 1a and Item 1b of Item 1 of Proposition 11.6.7.1.2 will be equivalent if $\mathcal{C}$ and $\mathcal{D}$ are small. If we assume stronger set-theoretical foundations like:

      • NBG (von Neumann–Bernays–Gödel set theory) with global choice, which introduces a notion of proper class and has the axiom of choice hold for them;

      • Grothendieck universes/inaccessible cardinals with global choice;

      then we can do away with the assumption that $\mathcal{C}$ and $\mathcal{D}$ be small.

    3. 3.

      Fix #01: Constructively Essentially Surjective Functors. Alternatively, one can introduce a notion of a functor being constructively essentially surjective, i.e.:

      • (★)
      • A functor $F\colon \mathcal{C}\to \mathcal{D}$ is constructively essentially surjective if there exists maps
        \begin{align*} G & \colon \operatorname {\mathrm{Obj}}(\mathcal{D}) \to \operatorname {\mathrm{Obj}}(\mathcal{C}),\\ \epsilon & \colon \operatorname {\mathrm{Obj}}(\mathcal{D}) \to \operatorname {\mathrm{Mor}}(\mathcal{D}) \end{align*}
        such that, for each $B\in \operatorname {\mathrm{Obj}}(\mathcal{D})$, the morphism $\epsilon (B)$ is an isomorphism of the form $F(G(\epsilon (B)))\cong B$.

      Now, if we do away with the axiom of choice, $F$ will be an equivalence of categories iff it is fully faithful and constructively essentially surjective.

    4. 4.

      Fix #02: Anafunctors. Alternatively, one may use the notion of anafunctors instead of functors to obtain a version of the statement “a functor is an equivalence of categories iff it is fully faithful and essentially surjective” that doesn’t depend on the axiom of choice.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: