Invertibility II. The map $\delta ^{\mathsf{Sets}}_{\ell |X,Y,Z} \circ \delta ^{\mathsf{Sets},-1}_{\ell |X,Y,Z}$ acts on elements as
\begin{align*} & \mkern 40mu\mathclap {(0,(x,y))}\mkern 40mu \mapsto \mkern 40mu\mathclap {(x,(0,y))} \mkern 40mu \mapsto \mkern 40mu\mathclap {(0,(x,y))}\mkern 35mu\mathrlap {,}\\ & \mkern 40mu\mathclap {(1,(x,z))}\mkern 40mu \mapsto \mkern 40mu\mathclap {(x,(1,z))}\mkern 40mu \mapsto \mkern 40mu\mathclap {(1,(x,z))}\mkern 35mu\mathrlap {,} \end{align*}
but these are the two possible cases for elements of $(X \times Y) \mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(X \times Z)$. Hence the map is equal to the identity.