Invertibility II. The map $\delta ^{\mathsf{Sets}}_{r|X,Y,Z} \circ \delta ^{\mathsf{Sets},-1}_{r|X,Y,Z}$ acts on elements as
\begin{align*} & \mkern 40mu\mathclap {(0,(x,z))}\mkern 40mu \mapsto \mkern 40mu\mathclap {((0,x),z)}\mkern 40mu \mapsto \mkern 40mu\mathclap {(0,(x,z))}\mkern 35mu\mathrlap {,}\\ & \mkern 40mu\mathclap {(1,(y,z))}\mkern 40mu \mapsto \mkern 40mu\mathclap {((1,y),z)}\mkern 40mu \mapsto \mkern 40mu\mathclap {(1,(y,z))}\mkern 35mu\mathrlap {,} \end{align*}
but these are the two possible cases for elements of $(X \times Z) \mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(Y \times Z)$. Hence the map is equal to the identity.