6.4.2 Deleting Basepoints

    Let $(X,x_{0})$ be a pointed set.

    The set with deleted basepoint associated to $X$ is the set $\smash {X^{-}}$ defined by

    \[ X^{-}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\setminus \left\{ x_{0}\right\} . \]

    Let $(X,x_{0})$ be a pointed set.

    1. 1.

      Functoriality. The assignment $(X,x_{0})\mapsto X^{-}$ defines a functor

      \[ X^{-}\colon \mathsf{Sets}^{\mathrm{actv}}_{*}\to \mathsf{Sets}, \]

      where:

      • Action on Objects. For each $X\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}^{\mathrm{actv}}_{*})$, we have

        \[ [(-)^{-}](X)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X^{-}, \]

        where $X^{-}$ is the set of Definition 6.4.2.1.1.

      • Action on Morphisms. For each morphism $f\colon X\to Y$ of $\mathsf{Sets}^{\mathrm{actv}}_{*}$, the image

        \[ f^{-}\colon X^{-}\to Y^{-} \]

        of $f$ by $(-)^{-}$ is the map defined by

        \[ f^{-}(x) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f(x) \]

        for each $x\in X^{-}$.

    2. 2.

      Adjoint Equivalence. We have an adjoint equivalence of categories

      witnessed by a bijection of sets

      \begin{align*} \mathsf{Sets}(X^{-},Y)\cong \mathsf{Sets}_{*}(X,Y^{+}),\end{align*}

      natural in $X\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$ and $Y\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, and by isomorphisms

      \begin{align*} (X^{-})^{+} & \cong X,\\ (Y^{+})^{-} & \cong Y, \end{align*}

      once again natural in $X\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$ and $Y\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.

  • 3.

    Symmetric Strong Monoidality With Respect to Wedge Sums. The functor of Item 1 has a symmetric strong monoidal structure

    \[ ((-)^{-},(-)^{-,\vee },(-)^{-,\vee }_{\mathbb {1}}) \colon (\mathsf{Sets}^{\mathrm{actv}}_{*},\vee ,\mathrm{pt}), \to (\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\text{Ø}), \]

    being equipped with isomorphisms of pointed sets

    \[ \begin{gathered} (-)^{-,\vee }_{X,Y} \colon X^{-}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y^{-} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(X\vee Y)^{-},\\ (-)^{-,\vee }_{\mathbb {1}} \colon \text{Ø}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathrm{pt}^{-}, \end{gathered} \]

    natural in $X,Y\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.

  • 4.

    Symmetric Strong Monoidality With Respect to Smash Products. The free pointed set functor of Item 1 has a symmetric strong monoidal structure

    \[ ((-)^{-},(-)^{-,\times },(-)^{-,\times }_{\mathbb {1}}) \colon (\mathsf{Sets}^{\mathrm{actv}}_{*},\wedge ,S^{0}), \to (\mathsf{Sets},\times ,\mathrm{pt}) \]

    being equipped with isomorphisms of pointed sets

    \[ \begin{gathered} (-)^{-}_{X,Y} \colon X^{-}\times Y^{-} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(X\wedge Y)^{-},\\ (-)^{-}_{\mathbb {1}} \colon \mathrm{pt}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(S^{0})^{-}, \end{gathered} \]

    natural in $X,Y\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.

  • Item 1: Functoriality
    We claim that $(-)^{-}$ is indeed a functor:

    • Preservation of Identities. Let $X\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$. We have

      \[ \operatorname {\mathrm{id}}^{-}_{X}(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x \]

      for each $x\in X^{-}$, so $\operatorname {\mathrm{id}}^{-}_{X}=\operatorname {\mathrm{id}}_{X^{-}}$.

    • Preservation of Composition. Given morphisms of pointed sets

      \begin{align*} f & \colon (X,x_{0}) \to (Y,y_{0}),\\ g & \colon (Y,y_{0}) \to (Z,z_{0}), \end{align*}

      we have

      \begin{align*} [g^{-}\circ f^{-}](x) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g^{-}(f^{-}(x))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g^{-}(f(x))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g(f(x))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[g\circ f]^{-}(x)\end{align*}

      for each $x\in X$, so $(g\circ f)^{-}=g^{-}\circ f^{-}$.

    This finishes the proof.

    Item 2: Adjoint Equivalence
    We proceed in a few steps:

    1. 1.

      Map I. We define a map

      \[ \Phi _{X,Y}\colon \mathsf{Sets}(X^{-},Y)\to \mathsf{Sets}^{\mathrm{actv}}_{*}(X,Y^{+}) \]

      by sending a map $\xi \colon X^{-}\to Y$ to the active morphism of pointed sets

      \[ \xi ^{\dagger }\colon X\to Y^{+} \]

      given by

      \[ \xi ^{\dagger }(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \xi (x) & \text{if $x\in X^{-}$,}\\ \star _{Y} & \text{if $x=x_{0}$,} \end{cases} \]

      for each $x\in X$, where this morphism is indeed active since $\xi (x)\in Y=Y^{+}\setminus \left\{ \star _{Y}\right\} $ for all $x\in X^{-}$.

    2. 2.

      Map II. We define a map

      \[ \Psi _{X,Y}\colon \mathsf{Sets}^{\mathrm{actv}}_{*}(X,Y^{+})\to \mathsf{Sets}(X^{-},Y) \]

      given by sending an active morphism of pointed sets $\xi \colon X\to Y^{+}$ to the map

      \[ \xi ^{\dagger }\colon X^{-}\to Y \]

      defined by

      \[ \xi ^{\dagger }(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi (x) \]

      for each $x\in X^{-}$, which is indeed well-defined (in that $\xi (x)\in Y$ for all $x\in X^{-}$) since $\xi $ is active.

    3. 3.

      Invertibility I. Given a map of sets $\xi \colon X^{-}\to Y$, we have

      \begin{align*} [\Psi _{X,Y}\circ \Phi _{X,Y}](\xi ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Psi _{X,Y}(\Phi _{X,Y}(\xi ))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Psi _{X,Y}(\left[\mspace {-6mu}\left[x\mapsto {\begin{cases} \xi (x)& \text{if $x\in X^{-}$}\\ \star _{Y}& \text{if $x=x_{0}$}\end{cases}}\right]\mspace {-6mu}\right])\\ & = [\mspace {-3mu}[x\mapsto \xi (x)]\mspace {-3mu}]\\ & = \xi \\ & = [\operatorname {\mathrm{id}}_{\mathsf{Sets}(X^{-},Y)}](\xi ). \end{align*}

      Therefore we have

      \[ \Psi _{X,Y}\circ \Phi _{X,Y}=\operatorname {\mathrm{id}}_{\mathsf{Sets}(X^{-},Y)}. \]
    4. 4.

      Invertibility II. Given a morphism of pointed sets

      \[ \xi \colon (X,x_{0})\to (Y^{+},\star _{Y}), \]

      we have

      \begin{align*} [\Phi _{X,Y}\circ \Psi _{X,Y}](\xi ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi _{X,Y}(\Psi _{X,Y}(\xi ))\\ & = \Phi _{X,Y}([\mspace {-3mu}[x\mapsto \xi (x)]\mspace {-3mu}])\\ & = \left[\mspace {-6mu}\left[x\mapsto {\begin{cases} \xi (x)& \text{if $x\in X^{-}$}\\ \star _{Y}& \text{if $x=x_{0}$}\end{cases}}\right]\mspace {-6mu}\right]\\ & = \xi \\ & = [\operatorname {\mathrm{id}}_{\mathsf{Sets}^{\mathrm{actv}}_{*}(X,Y^{+})}](\xi ). \end{align*}

      Therefore we have

      \[ \Phi _{X,Y}\circ \Psi _{X,Y}=\operatorname {\mathrm{id}}_{\mathsf{Sets}^{\mathrm{actv}}_{*}(X,Y^{+})}. \]
    5. 5.

      Naturality for $\Phi $, Part I. We need to show that, given a morphism of pointed sets

      \[ f\colon (X,x_{0})\to (X',x'_{0}), \]

      the diagram

      commutes. Indeed, given a map of sets $\xi \colon X'\to Y$, we have

      \begin{align*} [\Phi _{X,Y}\circ f^{*}](\xi ) & = \Phi _{X,Y}(f^{*}(\xi ))\\ & = \Phi _{X,Y}(\xi \circ f)\\ & = \left[\mspace {-6mu}\left[x\mapsto {\begin{cases} \xi (f(x))& \text{if $f(x)\in X^{\prime ,-}$}\\ \star _{Y}& \text{if $f(x)=x'_{0}$}\end{cases}}\right]\mspace {-6mu}\right]\\ & = f^{*}(\left[\mspace {-6mu}\left[x'\mapsto {\begin{cases} \xi (x')& \text{if $x'\in X^{\prime ,-}$}\\ \star _{Y}& \text{if $x'=x'_{0}$}\end{cases}}\right]\mspace {-6mu}\right])\\ & = f^{*}(\Phi _{X',Y}(\xi ))\\ & = [f^{*}\circ \Phi _{X',Y}](\xi ). \end{align*}

      Therefore we have

      \[ \Phi _{X,Y}\circ f^{*}=f^{*}\circ \Phi _{X',Y}, \]

      and the naturality diagram for $\Phi $ above indeed commutes.

    6. 6.

      Naturality for $\Phi $, Part II. We need to show that, given a morphism of pointed sets

      \[ g\colon (Y,y_{0})\to (Y',y'_{0}), \]

      the diagram

      commutes. Indeed, given a map of sets $\xi \colon X^{-}\to Y$, we have

      \begin{align*} [\Phi _{X,Y'}\circ g_{*}](\xi ) & = \Phi _{X,Y'}(g_{*}(\xi ))\\ & = \Phi _{X,Y'}(g\circ \xi )\\ & = \left[\mspace {-6mu}\left[x\mapsto {\begin{cases} g(\xi (x))& \text{if $x\in X^{-}$}\\ \star _{Y'}& \text{if $x=x_{0}$}\end{cases}}\right]\mspace {-6mu}\right]\\ & = g_{*}(\left[\mspace {-6mu}\left[x\mapsto {\begin{cases} \xi (x)& \text{if $x\in X^{-}$}\\ \star _{Y}& \text{if $x=x_{0}$}\end{cases}}\right]\mspace {-6mu}\right])\\ & = g_{*}(\Phi _{X,Y'}(\xi ))\\ & = [g_{*}\circ \Phi _{X,Y'}](\xi ). \end{align*}

      Therefore we have

      \[ \Phi _{X,Y'}\circ g_{*}=g_{*}\circ \Phi _{X,Y'}, \]

      and the naturality diagram for $\Phi $ above indeed commutes.

    7. 7.

      Naturality for $\Psi $. Since $\Phi $ is natural in each argument and $\Phi $ is a componentwise inverse to $\Psi $ in each argument, it follows from Chapter 11: Categories, Item 2 of Proposition 11.9.7.1.2 that $\Psi $ is also natural in each argument.

    8. 8.

      Fully Faithfulness of $(-)^{-}$. We aim to show that the assignment $f\mapsto f^{-}$ sets up a bijection

      \[ (-)^{-}_{X,Y}\colon \mathsf{Sets}^{\mathrm{actv}}_{*}(X,Y)\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathsf{Sets}(X^{-},Y^{-}). \]

      Indeed, the inverse map

      \[ (-)^{-,-1}_{X,Y}\colon \mathsf{Sets}(X^{-},Y^{-})\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathsf{Sets}^{\mathrm{actv}}_{*}(X,Y) \]

      is given by sending a map of sets $f\colon X^{-}\to Y^{-}$ to the active morphism of pointed sets $f^{\dagger }\colon X\to Y$ defined by

      \[ f^{\dagger }(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} f(x) & \text{if $x\in X^{-}$,}\\ y_{0} & \text{if $x=x_{0}$} \end{cases} \]

      for each $x\in X$.

    9. 9.

      Essential Surjectivity of $(-)^{-}$. We need to show that, given an object $X\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, there exists some $X'\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}^{\mathrm{actv}}_{*})$ such that $(X')^{-}\cong X$. Indeed, taking $X'=X^{+}$, we have

      \begin{align*} (X^{+})^{-} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(X\cup \left\{ \star _{X}\right\} )^{-}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(X\cup \left\{ \star _{X}\right\} )\setminus \left\{ \star _{X}\right\} \\ & = X, \end{align*}

      and thus we have in fact an equality $(X^{+})^{-}=X$, showing $(-)^{-}$ to be essentially surjective.

    10. 10.

      The Functor $(-)^{-}$ Is an Equivalence. Since $(-)^{-}$ is fully faithful and essentially surjective, it is an equivalence by Chapter 11: Categories, Item 1 of Proposition 11.6.7.1.2.

    This finishes the proof.

    Item 3: Symmetric Strong Monoidality With Respect to Wedge Sums
    We construct the strong monoidal structure on $(-)^{-}$ with respect to $\vee $ and $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$ as follows:

    • The Strong Monoidality Constraints. The isomorphism

      \[ (-)^{-,\vee }_{X,Y}\colon X^{-}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y^{-}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(X\vee Y)^{-} \]

      is given by

      \[ (-)^{-,\vee }_{X,Y}(z)=\begin{cases} [(0,x)] & \text{if $z=(0,x)$ with $x\in X$,}\\ [(1,y)] & \text{if $z=(1,y)$ with $y\in Y$}\end{cases} \]

      for each $z\in X^{-}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y^{-}$, with inverse

      \[ (-)^{-,\vee ,-1}_{X,Y} \colon (X\vee Y)^{-} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }X^{-}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y^{-} \]

      given by

      \[ (-)^{-,\vee ,-1}_{X,Y}(z)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} (0,x) & \text{if $z=[(0,x)]$,}\\ (1,y) & \text{if $z=[(1,y)]$,} \end{cases} \]

      for each $z\in (X\vee Y)^{-}$.

    • The Strong Monoidal Unity Constraint. The isomorphism

      \[ (-)^{+,\vee ,\mathbb {1}}_{X,Y}\colon \text{Ø}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathrm{pt}^{-} \]

      is an equality.

    The verification that these isomorphisms satisfy the coherence conditions making the functor $(-)^{-}$ into a symmetric strong monoidal functor is omitted.

    Item 4: Symmetric Strong Monoidality With Respect to Smash Products
    We construct the strong monoidal structure on $(-)^{+}$ with respect to $\wedge $ and $\times $ as follows:

    • The Strong Monoidality Constraints. The isomorphism

      \[ (-)^{-}_{X,Y}\colon X^{-}\times Y^{-}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(X\wedge Y)^{-} \]

      is given by

      \[ (-)^{-}_{X,Y}(x,y)=x\wedge y \]

      for each $(x,y)\in X^{-}\times Y^{-}$, with inverse

      \[ (-)^{-,-1}_{X,Y} \colon (X\wedge Y)^{-} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }X^{-}\times Y^{-} \]

      given by

      \[ (-)^{-,-1}_{X,Y}(x\wedge y)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(x,y) \]

      for each $x\wedge y\in (X\wedge Y)^{-}$.

    • The Strong Monoidal Unity Constraint. The isomorphism

      \[ (-)^{-,\mathbb {1}}_{X,Y}\colon \mathrm{pt}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }(S^{0})^{-} \]

      is given by sending $\star $ to $1$.

    The verification that these isomorphisms satisfy the coherence conditions making the functor $(-)^{+}$ into a symmetric strong monoidal functor is omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: