8.4.3 Internal Adjunctions

    Let $A$ and $B$ be sets.

    We have a natural bijection

    \[ \left\{ \begin{gathered} \text{Adjunctions in $\boldsymbol {\mathsf{Rel}}$}\\ \text{from $A$ to $B$} \end{gathered} \right\} \cong \left\{ \begin{gathered} \text{Functions}\\ \text{from $A$ to $B$} \end{gathered} \right\} , \]

    with every adjunction in $\boldsymbol {\mathsf{Rel}}$ being of the form $\operatorname {\mathrm{Gr}}\webleft (f\webright )\dashv f^{-1}$ for some function $f$.

    We proceed step by step:

  • 1.

    From Adjunctions in $\boldsymbol {\mathsf{Rel}}$ to Functions. An adjunction in $\boldsymbol {\mathsf{Rel}}$ from $A$ to $B$ consists of a pair of relations

    \begin{align*} R & \colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B,\\ S & \colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A, \end{align*}

    together with inclusions

    \begin{align*} \chi _{A} & \subset S\mathbin {\diamond }R,\\ R\mathbin {\diamond }S & \subset \chi _{B}. \end{align*}

    We claim that these conditions imply that $R$ is total and functional, i.e. that $R\webleft (a\webright )$ is a singleton for each $a\in A$:

    1. (a)

      $R\webleft (a\webright )$ Has an Element. Given $a\in A$, since $\chi _{A}\subset S\mathbin {\diamond }R$, we must have $\left\{ a\right\} \subset S\webleft (R\webleft (a\webright )\webright )$, implying that there exists some $b\in B$ such that $a\sim _{R}b$ and $b\sim _{S}a$, and thus $R\webleft (a\webright )\neq \text{Ø}$, as $b\in R\webleft (a\webright )$.

    2. (b)

      $R\webleft (a\webright )$ Has No More Than One Element. Suppose that we have $a\sim _{R}b$ and $a\sim _{R}b'$ for $b,b'\in B$. We claim that $b=b'$:

      1. (i)

        Since $\chi _{A}\subset S\mathbin {\diamond }R$, there exists some $k\in B$ such that $a\sim _{R}k$ and $k\sim _{S}a$.

      2. (ii)

        Since $R\mathbin {\diamond }S\subset \chi _{B}$, if $b''\sim _{S}a'$ and $a'\sim _{R}b'''$, then $b''=b'''$.

      3. (iii)

        Applying the above to $b''=k$, $b'''=b$, and $a'=a$, since $k\sim _{S}a$ and $a\sim _{R}b'$, we have $k=b$.

      4. (iv)

        Similarly $k=b'$.

      5. (v)

        Thus $b=b'$.

    Together, the above two items show $R\webleft (a\webright )$ to be a singleton, being thus given by $\operatorname {\mathrm{Gr}}\webleft (f\webright )$ for some function $f\colon A\to B$, which gives a map

    \[ \left\{ \begin{gathered} \text{Adjunctions in $\boldsymbol {\mathsf{Rel}}$}\\ \text{from $A$ to $B$} \end{gathered} \right\} \to \left\{ \begin{gathered} \text{Functions}\\ \text{from $A$ to $B$} \end{gathered} \right\} . \]

    Moreover, by uniqueness of adjoints (Unresolved reference, Unresolved reference of Unresolved reference), this implies also that $S=f^{-1}$.

  • 2.

    From Functions to Adjunctions in $\boldsymbol {\mathsf{Rel}}$. By Chapter 9: Constructions With Relations, Unresolved reference of Unresolved reference, every function $f\colon A\to B$ gives rise to an adjunction $\operatorname {\mathrm{Gr}}\webleft (f\webright )\dashv f^{-1}$ in $\mathrm{Rel}$, giving a map

    \[ \left\{ \begin{gathered} \text{Functions}\\ \text{from $A$ to $B$} \end{gathered} \right\} \to \left\{ \begin{gathered} \text{Adjunctions in $\boldsymbol {\mathsf{Rel}}$}\\ \text{from $A$ to $B$} \end{gathered} \right\} . \]
  • 3.

    Invertibility: From Functions to Adjunctions Back to Functions. We need to show that starting with a function $f\colon A\to B$, passing to $\operatorname {\mathrm{Gr}}\webleft (f\webright )\dashv f^{-1}$, and then passing again to a function gives $f$ again. This is clear however, since we have $a\sim _{\operatorname {\mathrm{Gr}}\webleft (f\webright )}b$ iff $f\webleft (a\webright )=b$.

  • 4.

    Invertibility: From Adjunctions to Functions Back to Adjunctions. We need to show that, given an adjunction $R\dashv S$ in $\boldsymbol {\mathsf{Rel}}$ giving rise to a function $f_{R,S}\colon A\to B$, we have

    \begin{align*} \operatorname {\mathrm{Gr}}\webleft (f_{R,S}\webright ) & = R,\\ f^{-1}_{R,S} & = S. \end{align*}

    We check these explicitly:

    • $\operatorname {\mathrm{Gr}}\webleft (f_{R,S}\webright )=R$. We have

      \begin{align*} \operatorname {\mathrm{Gr}}\webleft (f_{R,S}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft (a,f_{R,S}\webleft (a\webright )\webright )\in A\times B\ \middle |\ a\in A\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft (a,R\webleft (a\webright )\webright )\in A\times B\ \middle |\ a\in A\right\} \\ & = R. \end{align*}
    • $f^{-1}_{R,S}=S$. We first claim that, given $a\in A$ and $b\in B$, the following conditions are equivalent:

      • We have $a\sim _{R}b$.

      • We have $b\sim _{S}a$.

      Indeed:

      • If $a\sim _{R}b$, then $b\sim _{S}a$: Since $\chi _{A}\subset S\mathbin {\diamond }R$, there exists $k\in B$ such that $a\sim _{R}k$ and $k\sim _{S}a$, but since $a\sim _{R}b$ and $R$ is functional, we have $k=b$ and thus $b\sim _{S}a$.

      • If $b\sim _{S}a$, then $a\sim _{R}b$: First note that since $R$ is total we have $a\sim _{R}b'$ for some $b'\in B$. Now, since $R\mathbin {\diamond }S\subset \chi _{B}$, $b\sim _{S}a$, and $a\sim _{R}b'$, we have $b=b'$, and thus $a\sim _{R}b$.

      Having show this, we now have

      \begin{align*} f^{-1}_{R,S}\webleft (b\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ a\in A\ \middle |\ f_{R,S}\webleft (a\webright )=b\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ a\in A\ \middle |\ a\sim _{R}b\right\} \\ & = \left\{ a\in A\ \middle |\ b\sim _{S}a\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}S\webleft (b\webright ). \end{align*}

      for each $b\in B$, showing $f^{-1}_{R,S}=S$.

  • This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: