8.1.4 Apartness Composition of Relations

    Let $A$, $B$, and $C$ be sets and let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ and $S\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}C$ be relations.

    The apartness composition of $R$ and $S$ is the relation $S\mathbin {\square }R$ defined as follows:

    • Viewing relations as subsets of $A\times C$, we define

      \[ S\mathbin {\square }R \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (a,c)\in A\times C\ \middle |\ \begin{aligned} & \text{for each $b\in B$, we have}\\ & \text{$a\sim _{R}b$ or $b\sim _{S}c$}\end{aligned} \right\} . \]
    • Viewing relations as functions $A\times C\to \{ \mathsf{true},\mathsf{false}\} $, we define

      \begin{align*} (S\mathbin {\square }R)^{-_{1}}_{-_{2}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int _{b\in B}S^{-_{1}}_{b}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}R^{b}_{-_{2}}\\ & = \bigwedge _{b\in B}S^{-_{1}}_{b}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}R^{b}_{-_{2}},\end{align*}

      where the meet $\bigwedge $ is taken in the poset $(\{ \mathsf{true},\mathsf{false}\} ,\preceq )$ of Chapter 3: Sets, Definition 3.2.2.1.3.

    • Viewing relations as functions $A\to \mathcal{P}(C)$, we define

      \[ [S\mathbin {\square }R](a)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{b\in B\setminus R(a)}S(b) \]

      for each $a\in A$.

    Here are some examples of apartness composition of relations.

    1. 1.

      Composing Less/Greater Than Equal With Greater/Less Than Equal Signs. Let $A=B=C=\mathbb {R}$. We have

      \begin{align*} \mathord {\leq }\mathbin {\square }\mathord {\geq } & = \text{Ø},\\ \mathord {\geq }\mathbin {\square }\mathord {\leq } & = \text{Ø}. \end{align*}
    2. 2.

      Composing Less/Greater Than Equal Signs With Less/Greater Than Equal Signs. Let $A=B=C=\mathbb {R}$. We have

      \begin{align*} \mathord {\leq }\mathbin {\square }\mathord {\leq } & = \text{Ø},\\ \mathord {\geq }\mathbin {\square }\mathord {\geq } & = \text{Ø}. \end{align*}
    3. 3.

      Equality and Inequality. Let $A=B=C=\mathbb {Z}$. We have

      \begin{align*} \mathord {=}\mathbin {\square }\mathord {\neq } & = \mathord {=},\\ \mathord {\neq }\mathbin {\square }\mathord {=} & = \mathord {=}. \end{align*}
    4. 4.

      Subset Inclusion. Let $X$ be a set with at least three elements and consider the relations $\subset $ and $\supset $ in $\mathcal{P}(X)$. We have

      \[ \mathord {\supset }\mathbin {\square }\mathord {\subset }=\left\{ (U,V)\in \mathcal{P}(X)\ \middle |\ \text{$U=\text{Ø}$ or $V=\text{Ø}$}\right\} . \]

    Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$, $S\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}C$, and $T\colon C\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}D$ be relations.

    1. 1.

      Functoriality. The assignments $R,S,(R,S)\mapsto S\mathbin {\square }R$ define functors

      \[ \begin{array}{ccc} S\mathbin {\square }-\colon \mkern -15mu & \mathbf{Rel}(A,B) \mkern -17.5mu& {}\mathbin {\to }\mathbf{Rel}(A,C),\\ -\mathbin {\square }R\colon \mkern -15mu & \mathbf{Rel}(B,C) \mkern -17.5mu& {}\mathbin {\to }\mathbf{Rel}(A,C),\\ -_{1}\mathbin {\square }-_{2}\colon \mkern -15mu & \mathbf{Rel}(B,C)\times \mathbf{Rel}(A,B) \mkern -17.5mu& {}\mathbin {\to }\mathbf{Rel}(A,C). \end{array} \]

      In particular, given relations

      if $R_{1}\subset R_{2}$ and $S_{1}\subset S_{2}$, then $S_{1}\mathbin {\square }R_{1}\subset S_{2}\mathbin {\square }R_{2}$.

    2. 2.

      Associativity. We have

      \[ (T\mathbin {\square }S)\mathbin {\square }R = T\mathbin {\square }(S\mathbin {\square }R). \]
  • 3.

    Unitality. We have

    \begin{align*} \nabla _{B}\mathbin {\square }R & = R,\\ R\mathbin {\square }\nabla _{A} & = R. \end{align*}
  • 4.

    Relation to Composition of Relations. We have

    \begin{align*} (S\mathbin {\square }R)^{\textsf{c}} & = S^{\textsf{c}}\mathbin {\diamond }R^{\textsf{c}},\\ (S\mathbin {\diamond }R)^{\textsf{c}} & = S^{\textsf{c}}\mathbin {\square }R^{\textsf{c}}, \end{align*}

    where $(-)^{\textsf{c}}$ is the complement functor of Chapter 4: Constructions With Sets, Section 4.3.11. In particular, $\mathord {\mathbin {\square }}$ is a special case of composition of relations, as we have

    \[ S\mathbin {\square }R=(S^{\textsf{c}}\mathbin {\diamond }R^{\textsf{c}})^{\textsf{c}}. \]

    This is also compatible with units, as we have $\nabla ^{\textsf{c}}_{A}=\Delta _{A}$.

  • 5.

    Linear Distributivity. We have inclusions of relations

    \begin{align*} T\mathbin {\diamond }(S\mathbin {\square }R) & \subset (T\mathbin {\diamond }S)\mathbin {\square }R,\\ (T\mathbin {\square }S)\mathbin {\diamond }R & \subset T\mathbin {\square }(S\mathbin {\diamond }R). \end{align*}
  • 6.

    Interaction With Converses. We have

    \[ (S\mathbin {\square }R)^{\dagger } = R^{\dagger }\mathbin {\square }S^{\dagger }. \]
  • Item 1: Functoriality
    We have

    \begin{align*} S_{1}\mathbin {\square }R_{1} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (a,c)\in A\times C\ \middle |\ \begin{aligned} & \text{for each $b\in B$, we have}\\ & \text{$a\sim _{R_{1}}b$ or $b\sim _{S_{1}}c$}\end{aligned} \right\} \\ & \subset \left\{ (a,c)\in A\times C\ \middle |\ \begin{aligned} & \text{for each $b\in B$, we have}\\ & \text{$a\sim _{R_{2}}b$ or $b\sim _{S_{2}}c$}\end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}S_{2}\mathbin {\square }R_{2}. \end{align*}

    This finishes the proof.

    Item 2: Associativity
    Indeed, we have

    \begin{align*} (T\mathbin {\square }S)\mathbin {\square }R & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left(\int _{c\in C}T^{-_{2}}_{c}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}S^{c}_{-_{2}}\right)\mathbin {\square }R\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int _{b\in B}\left(\int _{c\in C}T^{-_{1}}_{c}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}S^{c}_{b}\right)\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}R^{b}_{-_{2}}\\ & = \int _{b\in B}\int _{c\in C}(T^{-_{1}}_{c}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}S^{c}_{b})\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}R^{b}_{-_{2}}\\ & = \int _{c\in C}\int _{b\in B}(T^{-_{1}}_{c}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}S^{c}_{b})\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}R^{b}_{-_{2}}\\ & = \int _{c\in C}\int _{b\in B}T^{-_{1}}_{c}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(S^{c}_{b}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}R^{b}_{-_{2}})\\ & = \int _{c\in C}T^{-_{1}}_{c}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\left(\int _{b\in B}S^{c}_{b}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}R^{b}_{-_{2}}\right)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int _{c\in C}T^{-_{1}}_{c}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(S\mathbin {\square }R)^{c}_{-_{2}}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}T\mathbin {\square }(S\mathbin {\square }R). \end{align*}

    In the language of relations, given $a\in A$ and $d\in D$, the stated equality witnesses the equivalence of the following two statements:

    • We have $a\sim _{(T\mathbin {\square }S)\mathbin {\square }R}d$, i.e. there exists some $b\in B$ such that:

      • We have $a\sim _{R}b$;

      • We have $b\sim _{T\mathbin {\square }S}d$, i.e. there exists some $c\in C$ such that:

        • We have $b\sim _{S}c$;

        • We have $c\sim _{T}d$;

    • We have $a\sim _{T\mathbin {\square }(S\mathbin {\square }R)}d$, i.e. there exists some $c\in C$ such that:

      • We have $a\sim _{S\mathbin {\square }R}c$, i.e. there exists some $b\in B$ such that:

        • We have $a\sim _{R}b$;

        • We have $b\sim _{S}c$;

      • We have $c\sim _{T}d$;

    both of which are equivalent to the statement

    • There exist $b\in B$ and $c\in C$ such that $a\sim _{R}b\sim _{S}c\sim _{T}d$.

    Item 3: Unitality
    Indeed, we have

    \begin{align*} \nabla _{B}\mathbin {\square }R & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int _{b\in B}(\nabla _{B})^{-_{1}}_{b}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}R^{b}_{-_{2}}\\ & = \bigwedge _{b\in B}(\nabla _{B})^{-_{1}}_{b}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}R^{b}_{-_{2}}\\ & = (\bigwedge _{\substack {b\in B\\ \begin{bgroup} b=-_{1} \end{bgroup}}}(\nabla _{B})^{-_{1}}_{b}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}R^{b}_{-_{2}})\wedge (\bigwedge _{\substack {b\in B\\ \begin{bgroup} b\neq -_{1} \end{bgroup}}}(\nabla _{B})^{-_{1}}_{b}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}R^{b}_{-_{2}})\\ & = ((\nabla _{B})^{-_{1}}_{-_{1}}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}R^{-_{1}}_{-_{2}})\wedge (\bigwedge _{\substack {b\in B\\ \begin{bgroup} b\neq -_{1} \end{bgroup}}}\mathsf{t}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}R^{b}_{-_{2}})\\ & = (\mathsf{f}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}R^{-_{1}}_{-_{2}})\wedge (\bigwedge _{\substack {b\in B\\ \begin{bgroup} b\neq -_{1} \end{bgroup}}}\mathsf{t})\\ & = R^{-_{1}}_{-_{2}}\wedge \mathsf{t}\\ & = R^{-_{1}}_{-_{2}}, \end{align*}

    and

    \begin{align*} R\mathbin {\square }\nabla _{A} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int _{a\in A}R^{-_{1}}_{a}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(\nabla _{A})^{a}_{-_{2}}\\ & = \bigwedge _{a\in A}R^{-_{1}}_{a}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(\nabla _{A})^{a}_{-_{2}}\\ & = (\bigwedge _{\substack {a\in A\\ \begin{bgroup} a=-_{2} \end{bgroup}}}R^{-_{1}}_{a}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(\nabla _{A})^{a}_{-_{2}})\wedge (\bigwedge _{\substack {a\in A\\ \begin{bgroup} a\neq -_{2} \end{bgroup}}}R^{-_{1}}_{a}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(\nabla _{A})^{a}_{-_{2}})\\ & = (R^{-_{1}}_{-_{2}}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}(\nabla _{A})^{-_{2}}_{-_{2}})\wedge (\bigwedge _{\substack {a\in A\\ \begin{bgroup} a\neq -_{2} \end{bgroup}}}R^{-_{1}}_{a}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\mathsf{t})\\ & = (R^{-_{1}}_{-_{2}}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\mathsf{f})\wedge (\bigwedge _{\substack {a\in A\\ \begin{bgroup} a\neq -_{2} \end{bgroup}}}\mathsf{t})\\ & = R^{-_{1}}_{-_{2}}\wedge \mathsf{t}\\ & = R^{-_{1}}_{-_{2}}, \end{align*}

    This finishes the proof.

    Item 4: Relation to Composition of Relations
    We proceed in a few steps.

    • We have $a\sim _{(S\mathbin {\square }R)^{\textsf{c}}}b$ iff $a\nsim _{S\mathbin {\square }R}b$.

    • We have $a\nsim _{S\mathbin {\square }R}b$ iff the assertion “for each $b\in B$, we have $a\sim _{R}b$ or $b\sim _{S}c$” is false.

    • That happens iff there exists some $b\in B$ such that $a\nsim _{R}b$ and $b\nsim _{S}c$.

    • That happens iff there exists some $b\in B$ such that $a\sim _{R^{\textsf{c}}}b$ and $b\sim _{S^{\textsf{c}}}c$.

    The second equality then follows from the first one by Chapter 4: Constructions With Sets, Item 3 of Proposition 4.3.11.1.2.

    Item 5: Linear Distributivity
    We have
    \begin{align*} T\mathbin {\diamond }(S\mathbin {\square }R) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (d,a)\in D\times A\ \middle |\ \begin{aligned} & \text{there exists some $c\in C$ such}\\ & \text{that $a\sim _{S\mathbin {\square }R}c$ and $c\sim _{T}d$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (d,a)\in D\times A\ \middle |\ \begin{aligned} & \text{there exists some $c\in C$ such that}\\ & \text{$c\sim _{T}d$ and, for each $b\in B$,}\\ & \text{we have $a\sim _{R}b$ or $b\sim _{S}c$}\end{aligned} \right\} \\ & = \left\{ (d,a)\in D\times A\ \middle |\ \begin{aligned} & \text{the following conditions are satisfied:}\\ & \mkern 20mu\text{1. For each $b\in B$, we have $a\sim _{R}b$ or $b\sim _{S}c$.}\\ & \mkern 20mu\text{2. There exists $c\in C$ such that $c\sim _{T}d$.} \end{aligned} \right\} \\ & \subset \left\{ (d,a)\in D\times A\ \middle |\ \begin{aligned} & \text{for each $b\in B$, at least one of the}\\ & \text{following conditions is satisfied:}\\ & \mkern 20mu\text{1. We have $a\sim _{R}b$.}\\ & \mkern 20mu\text{2. There exists $c\in C$ such that $b\sim _{S}c$}\\ & \mkern 20mu\phantom{\text{2. }}\text{and $c\sim _{T}d$.} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (d,a)\in D\times A\ \middle |\ \begin{aligned} & \text{for each $b\in B$, we have}\\ & \text{$a\sim _{R}b$ or there exists some $c\in C$}\\ & \text{such that $b\sim _{S}c$ and $c\sim _{T}d$}\\ \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (d,a)\in D\times A\ \middle |\ \begin{aligned} & \text{for each $b\in B$, we have}\\ & \text{$a\sim _{R}b$ or $b\sim _{T\mathbin {\diamond }S}d$}\\ \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(T\mathbin {\diamond }S)\mathbin {\square }R\end{align*}
    and
    \begin{align*} (T\mathbin {\square }S)\mathbin {\diamond }R & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (d,a)\in D\times A\ \middle |\ \begin{aligned} & \text{there exists some $b\in B$ such}\\ & \text{that $a\sim _{R}b$ and $b\sim _{T\mathbin {\square }S}d$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (d,a)\in D\times A\ \middle |\ \begin{aligned} & \text{there exists some $b\in B$ such}\\ & \text{that $a\sim _{R}b$ and, for each $c\in C$,}\\ & \text{we have $b\sim _{S}c$ or $c\sim _{T}d$}\end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (d,a)\in D\times A\ \middle |\ \begin{aligned} & \text{there exists some $b\in B$ satisfying}\\ & \text{the following conditions:}\\ & \mkern 20mu\text{1. We have $a\sim _{R}b$.}\\ & \mkern 20mu\text{2. For each $c\in C$, we have $b\sim _{S}c$}\\ & \mkern 20mu\phantom{\text{2. }}\text{or $c\sim _{T}d$.} \end{aligned} \right\} \\ & \subset \left\{ (d,a)\in D\times A\ \middle |\ \begin{aligned} & \text{for each $c\in C$, at least one of the}\\ & \text{following conditions is satisfied:}\\ & \mkern 20mu\text{1. We have $c\sim _{T}d$.}\\ & \mkern 20mu\text{2. There exists some $b\in B$ such that}\\ & \mkern 20mu\phantom{\text{2. }}\text{we have $a\sim _{R}b$ and $b\sim _{S}c$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (d,a)\in D\times A\ \middle |\ \begin{aligned} & \text{for each $c\in C$, we have $c\sim _{T}d$}\\ & \text{or there exists some $b\in B$, such that}\\ & \text{we have $a\sim _{R}b$ and $b\sim _{S}c$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (d,a)\in D\times A\ \middle |\ \begin{aligned} & \text{for each $c\in C$, we have}\\ & \text{$a\sim _{S\mathbin {\diamond }R}c$ or $c\sim _{T}d$}\end{aligned} \right\} \\ & \subset T\mathbin {\square }(S\mathbin {\diamond }R). \end{align*}
    This finishes the proof.

    Item 6: Interaction With Converses
    This is a repetition of Item 4 of Proposition 8.1.5.1.3 and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: