8.4.1 The Category of Relations With Apartness Composition

The category of relations with apartness composition is the category $\mathsf{Rel}^{\mathord {\mathbin {\square }}}$ where

  • Objects. The objects of $\mathsf{Rel}^{\mathord {\mathbin {\square }}}$ are sets.

  • Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, we have

    \[ \mathsf{Rel}^{\mathord {\mathbin {\square }}}(A,B) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathrm{Rel}(A,B). \]
  • Identities. For each $A\in \operatorname {\mathrm{Obj}}(\mathsf{Rel}^{\mathord {\mathbin {\square }}})$, the unit map

    \[ \mathbb {1}^{\mathsf{Rel}^{\mathord {\mathbin {\square }}}}_{A} \colon \mathrm{pt}\to \mathrm{Rel}(A,A) \]

    of $\mathsf{Rel}^{\mathord {\mathbin {\square }}}$ at $A$ is defined by

    \[ \operatorname {\mathrm{id}}^{\mathsf{Rel}^{\mathord {\mathbin {\square }}}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\nabla _{A}(-_{1},-_{2}), \]

    where $\nabla _{A}(-_{1},-_{2})$ is the antidiagonal relation of $A$ of Example 8.2.1.1.4.

  • Composition. For each $A,B,C\in \operatorname {\mathrm{Obj}}(\mathsf{Rel}^{\mathord {\mathbin {\square }}})$, the composition map

    \[ \circ ^{\mathsf{Rel}^{\mathord {\mathbin {\square }}}}_{A,B,C}\colon \mathrm{Rel}(B,C)\times \mathrm{Rel}(A,B)\to \mathrm{Rel}(A,C) \]

    of $\mathsf{Rel}^{\mathord {\mathbin {\square }}}$ at $(A,B,C)$ is defined by

    \[ S\mathbin {{\circ }^{\mathsf{Rel}^{\mathord {\mathbin {\square }}}}_{A,B,C}}R \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}S\mathbin {\square }R \]

    for each $(S,R)\in \mathrm{Rel}(B,C)\times \mathrm{Rel}(A,B)$, where $S\mathbin {\diamond }R$ is the composition of $S$ and $R$ of Definition 8.1.4.1.1.

The functor

\[ (-)^{\textsf{c}}\colon \mathsf{Rel}\to \mathsf{Rel}^{\mathord {\mathbin {\square }}} \]

given by the identity on objects and by $R\mapsto R^{\textsf{c}}$ on morphisms is an isomorphism of categories.

By Item 4 of Proposition 8.1.4.1.3, we see that $(-)^{\textsf{c}}$ is indeed a functor.

By Chapter 11: Categories, Item 1 of Proposition 11.6.8.1.3, it suffices to show that $(-)^{\dagger }$ is bijective on objects (which follows by definition) and fully faithful. Indeed, the map

\[ (-)^{\textsf{c}}\colon \mathrm{Rel}(A,B)\to \mathrm{Rel}(A,B) \]

defined by the assignment $R\mapsto R^{\textsf{c}}$ is a bijection by Chapter 4: Constructions With Sets, Item 3 of Proposition 4.3.11.1.2. Thus $(-)^{\textsf{c}}$ is an isomorphism of categories.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: