8.4.2 The 2-Category of Relations With Apartness Composition

The 2-category of relations with apartness composition is the locally posetal 2-category $\boldsymbol {\mathsf{Rel}}$ where

  • Objects. The objects of $\boldsymbol {\mathsf{Rel}}$ are sets.

  • $\mathbf{Hom}$-Objects. For each $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, we have

    \begin{align*} \operatorname {\mathrm{Hom}}_{\boldsymbol {\mathsf{Rel}}}(A,B) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathbf{Rel}(A,B)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(\mathrm{Rel}(A,B),\subset ).\end{align*}
  • Identities. For each $A\in \operatorname {\mathrm{Obj}}(\boldsymbol {\mathsf{Rel}})$, the unit map

    \[ \mathbb {1}^{\boldsymbol {\mathsf{Rel}}}_{A} \colon \mathrm{pt}\to \mathbf{Rel}(A,A) \]

    of $\boldsymbol {\mathsf{Rel}}$ at $A$ is defined by

    \[ \operatorname {\mathrm{id}}^{\boldsymbol {\mathsf{Rel}}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{A}(-_{1},-_{2}), \]

    where $\chi _{A}(-_{1},-_{2})$ is the characteristic relation of $A$ of Example 8.2.1.1.3.

  • Composition. For each $A,B,C\in \operatorname {\mathrm{Obj}}(\boldsymbol {\mathsf{Rel}})$, the composition map1

    \[ \circ ^{\boldsymbol {\mathsf{Rel}}}_{A,B,C}\colon \mathbf{Rel}(B,C)\times \mathbf{Rel}(A,B)\to \mathbf{Rel}(A,C) \]

    of $\boldsymbol {\mathsf{Rel}}$ at $(A,B,C)$ is defined by

    \[ S\mathbin {{\circ }^{\boldsymbol {\mathsf{Rel}}}_{A,B,C}}R \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}S\mathbin {\diamond }R \]

    for each $(S,R)\in \boldsymbol {\mathsf{Rel}}(B,C)\times \boldsymbol {\mathsf{Rel}}(A,B)$, where $S\mathbin {\diamond }R$ is the composition of $S$ and $R$ of Definition 8.1.3.1.1.


  1. 1That this is indeed a morphism of posets is proven in Unresolved reference of Proposition 8.1.4.1.3.

The functor

\[ (-)^{\textsf{c}}\colon \boldsymbol {\mathsf{Rel}}\to \boldsymbol {\mathsf{Rel}}^{\mathord {\mathbin {\square }},\mathsf{co}} \]

given by the identity on objects and by $R\mapsto R^{\textsf{c}}$ on 1-morphisms is a 2-isomorphism of 2-categories.

By Item 4 of Proposition 8.1.4.1.3, we see that $(-)^{\textsf{c}}$ is indeed a functor. By Chapter 4: Constructions With Sets, Item 1 of Proposition 4.3.11.1.2, it is also a 2-functor.

By Unresolved reference, it suffices to show that $(-)^{\textsf{c}}$ is:

Thus $(-)^{\textsf{c}}$ is indeed a 2-isomorphism of categories.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: