12.1.6 Properties of Categories of Presheaves

    Let $\mathcal{C}$ be a category.

  • 1.

    Functoriality. The assignment $\mathcal{C}\mapsto \mathsf{PSh}(\mathcal{C})$ defines a functor

    \[ \mathsf{PSh}\colon \mathsf{Cats}\to \mathsf{Cats} \]

    up to some set-theoretic considerations.1

  • 2.

    Interaction With Slice Categories. Let $X\in \operatorname {\mathrm{Obj}}(\mathcal{C})$. We have an equivalence of categories

    \[ \mathsf{PSh}(\mathcal{C}_{/X})\mathrel {\smash {\overset {\scriptscriptstyle \text{eq.}}\cong }}\mathsf{PSh}(\mathcal{C})_{/h_{X}}. \]
  • 3.

    Interaction With Categories of Elements. Let $\mathcal{F}\in \operatorname {\mathrm{Obj}}(\mathsf{PSh}(\mathcal{C}))$. We have an equivalence of categories

    \[ \mathsf{PSh}(\textstyle \int _{\mathcal{C}}\mathcal{F})\mathrel {\smash {\overset {\scriptscriptstyle \text{eq.}}\cong }}\mathsf{PSh}(\mathcal{C})_{/\mathcal{F}}. \]

    1. 1For instance:
      • The $\mathsf{Cats}$ in the source of $\mathsf{PSh}$ could be small categories, and then the $\mathsf{Cats}$ in the right would be locally small categories.

      • The $\mathsf{Cats}$ in the source of $\mathsf{PSh}$ could be locally small categories, and then the $\mathsf{Cats}$ on the right would be large categories.

      In general, one can systematise and formalise this using Grothendieck universes.

    Item 1: Functoriality
    Omitted.

    Item 2: Interaction With Slice Categories
    Omitted.

    Item 3: Interaction With Categories of Elements
    Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: