Let $\mathcal{C}$ be a category.
-
1.
Functoriality. The assignment $\mathcal{C}\mapsto \mathsf{PSh}(\mathcal{C})$ defines a functor
\[ \mathsf{PSh}\colon \mathsf{Cats}\to \mathsf{Cats} \]up to some set-theoretic considerations.1
-
2.
Interaction With Slice Categories. Let $X\in \operatorname {\mathrm{Obj}}(\mathcal{C})$. We have an equivalence of categories
\[ \mathsf{PSh}(\mathcal{C}_{/X})\mathrel {\smash {\overset {\scriptscriptstyle \text{eq.}}\cong }}\mathsf{PSh}(\mathcal{C})_{/h_{X}}. \]