11.3.1 Statement

Let $\mathcal{C}$ be a category.

We have a quadruple adjunction

witnessed by bijections of sets

\begin{align*} \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}(\pi _{0}(\mathcal{C}),X) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}(\mathcal{C},X_{\mathsf{disc}}),\\ \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}(X_{\mathsf{disc}},\mathcal{C}) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}(X,\operatorname {\mathrm{Obj}}(\mathcal{C})),\\ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}(\operatorname {\mathrm{Obj}}(\mathcal{C}),X) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}(\mathcal{C},X_{\mathsf{indisc}}), \end{align*}

natural in $\mathcal{C}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$ and $X\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, where

  • The functor

    \[ \pi _{0}\colon \mathsf{Cats}\to \mathsf{Sets}, \]

    the connected components functor, is the functor sending a category to its set of connected components of Definition 11.3.2.2.1.

  • The functor

    \[ (-)_{\mathsf{disc}}\colon \mathsf{Sets}\to \mathsf{Cats}, \]

    the discrete category functor, is the functor sending a set to its associated discrete category of Item 1.

  • The functor

    \[ \operatorname {\mathrm{Obj}}\colon \mathsf{Cats}\to \mathsf{Sets}, \]

    the object functor, is the functor sending a category to its set of objects.

  • The functor

    \[ (-)_{\mathsf{indisc}}\colon \mathsf{Sets}\to \mathsf{Cats}, \]

    the indiscrete category functor, is the functor sending a set to its associated indiscrete category of Item 1.

Omitted.

Warning 11.3.1.1.2Proposition 11.3.1.1.1 Cannot Be Enhanced to a 2-Categorical Adjunction

(This is a stub, to be revised and expanded upon later.)

The discrete category functor of Proposition 11.3.1.1.1 lifts to a $2$-functor, but it fails to preserve 2-categorical colimits, and hence lacks a right 2-adjoint. For instance, the 2-pushout of $\mathrm{pt}\leftarrow S^{0}\to \mathrm{pt}$ in $\mathsf{Sets}_{\mathsf{ldisc}}$ is $\mathrm{pt}$, but in $\mathsf{Cats}_{\mathsf{2}}$ it is given by $\mathsf{B}{\mathbb {Z}}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: