The pushout of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ along $\webleft (f,g\webright )$ is the pushout of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ along $\webleft (f,g\webright )$ in $\mathsf{Sets}_{*}$ as in ,
.
6.3.4 Pushouts
Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, and $\webleft (Z,z_{0}\webright )$ be pointed sets and let $f\colon \webleft (Z,z_{0}\webright )\to \webleft (X,x_{0}\webright )$ and $g\colon \webleft (Z,z_{0}\webright )\to \webleft (Y,y_{0}\webright )$ be morphisms of pointed sets.
Concretely, the pushout of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ along $\webleft (f,g\webright )$ is the pair consisting of:
-
•
The Colimit. The pointed set $\webleft (X\coprod _{f,Z,g}Y,p_{0}\webright )$, where:
-
•
The set $X\coprod _{f,Z,g}Y$ is the pushout (of unpointed sets) of $X$ and $Y$ over $Z$ with respect to $f$ and $g$;
-
•
We have $p_{0}=\webleft [x_{0}\webright ]=\webleft [y_{0}\webright ]$.
-
•
-
•
The Cocone. The morphisms of pointed sets
\begin{align*} \mathrm{inj}_{1} & \colon \webleft (X,x_{0}\webright )\to \webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright ),\\ \mathrm{inj}_{2} & \colon \webleft (Y,y_{0}\webright )\to \webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright ) \end{align*}given by
\begin{align*} \mathrm{inj}_{1}\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (0,x\webright )\webright ]\\ \mathrm{inj}_{2}\webleft (y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (1,y\webright )\webright ]\end{align*}for each $x\in X$ and each $y\in Y$.
Firstly, we note that indeed $\webleft [x_{0}\webright ]=\webleft [y_{0}\webright ]$, as we have
since $f$ and $g$ are morphisms of pointed sets, with the relation $\mathord {\sim }$ on $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{Z}Y$ then identifying $x_{0}=f\webleft (z_{0}\webright )\sim g\webleft (z_{0}\webright )=y_{0}$.
We now claim that $\webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright )$ is the categorical pushout of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ with respect to $\webleft (f,g\webright )$ in $\mathsf{Sets}_{*}$. First we need to check that the relevant pushout diagram commutes, i.e. that we have
where $\webleft [\webleft (0,f\webleft (z\webright )\webright )\webright ]=\webleft [\webleft (1,g\webleft (z\webright )\webright )\webright ]$ by the definition of the relation $\mathord {\sim }$ on $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y$ (the coproduct of unpointed sets of $X$ and $Y$). Next, we prove that $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{Z}Y$ satisfies the universal property of the pushout. Suppose we have a diagram of the form
making the diagram
via
for each $p\in X\mathbin {\textstyle \coprod _{Z}}Y$, where the well-definedness of $\phi $ is proven in the same way as in the proof of Chapter 4: Constructions With Sets, Definition 4.2.4.1.1. Finally, we show that $\phi $ is indeed a morphism of pointed sets, as we have
or alternatively
where we use that $\iota _{1}$ (resp. $\iota _{2}$) is a morphism of pointed sets.
Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, $\webleft (Z,z_{0}\webright )$, and $\webleft (A,a_{0}\webright )$ be pointed sets.
-
1.
Functoriality. The assignment $\webleft (X,Y,Z,f,g\webright )\mapsto X\mathbin {\textstyle \coprod _{f,Z,g}}Y$ defines a functor
\[ -_{1}\mathbin {\textstyle \coprod _{-_{3}}}-_{1}\colon \mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}\webright )\to \mathsf{Sets}_{*}, \]where $\mathcal{P}$ is the category that looks like this:
In particular, the action on morphisms of $-_{1}\mathbin {\textstyle \coprod _{-_{3}}}-_{1}$ is given by sending a morphismin $\mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}_{*}\webright )$ to the morphism of pointed sets\[ \xi \colon \webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright )\overset {\exists !}{\to }\webleft (X'\mathbin {\textstyle \coprod _{Z'}}Y',p'_{0}\webright ) \]given by
\[ \xi \webleft (p\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \phi \webleft (x\webright ) & \text{if $p=\webleft [\webleft (0,x\webright )\webright ]$},\\ \psi \webleft (y\webright ) & \text{if $p=\webleft [\webleft (1,y\webright )\webright ]$} \end{cases} \]for each $p\in X\mathbin {\textstyle \coprod _{Z}}Y$, which is the unique morphism of pointed sets making the diagram
commute. -
2.
Associativity. Given a diagram
in $\mathsf{Sets}$, we have isomorphisms of pointed sets\[ \webleft (X\mathbin {\textstyle \coprod _{W}}Y\webright )\mathbin {\textstyle \coprod _{V}}Z\cong \webleft (X\mathbin {\textstyle \coprod _{W}}Y\webright )\mathbin {\textstyle \coprod _{Y}}\webleft (Y\mathbin {\textstyle \coprod _{V}}Z\webright ) \cong X\mathbin {\textstyle \coprod _{W}}\webleft (Y\mathbin {\textstyle \coprod _{V}}Z\webright ), \]where these pullbacks are built as in the diagrams
-
3.
Unitality. We have isomorphisms of sets
-
4.
Commutativity. We have an isomorphism of sets
-
5.
Interaction With Coproducts. We have
-
6.
Symmetric Monoidality. The triple $\webleft (\mathsf{Sets}_{*},\mathbin {\textstyle \coprod _{X}},\webleft (X,x_{0}\webright )\webright )$ is a symmetric monoidal category.