The pushout of $(X,x_{0})$ and $(Y,y_{0})$ over $(Z,z_{0})$ along $(f,g)$ is the pushout of $(X,x_{0})$ and $(Y,y_{0})$ over $(Z,z_{0})$ along $(f,g)$ in $\mathsf{Sets}_{*}$ as in ,
.
-
•
The Colimit. The pointed set $(X\coprod _{f,Z,g}Y,p_{0})$, where:
-
•
The set $X\coprod _{f,Z,g}Y$ is the pushout (of unpointed sets) of $X$ and $Y$ over $Z$ with respect to $f$ and $g$;
-
•
We have $p_{0}=[x_{0}]=[y_{0}]$.
-
•
-
•
The Cocone. The morphisms of pointed sets
\begin{align*} \mathrm{inj}_{1} & \colon (X,x_{0})\to (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}),\\ \mathrm{inj}_{2} & \colon (Y,y_{0})\to (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}) \end{align*}given by
\begin{align*} \mathrm{inj}_{1}(x) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[(0,x)]\\ \mathrm{inj}_{2}(y) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[(1,y)]\end{align*}for each $x\in X$ and each $y\in Y$.
-
1.
Functoriality. The assignment $(X,Y,Z,f,g)\mapsto X\mathbin {\textstyle \coprod _{f,Z,g}}Y$ defines a functor
\[ -_{1}\mathbin {\textstyle \coprod _{-_{3}}}-_{1}\colon \mathsf{Fun}(\mathcal{P},\mathsf{Sets})\to \mathsf{Sets}_{*}, \]where $\mathcal{P}$ is the category that looks like this:
In particular, the action on morphisms of $-_{1}\mathbin {\textstyle \coprod _{-_{3}}}-_{1}$ is given by sending a morphismin $\mathsf{Fun}(\mathcal{P},\mathsf{Sets}_{*})$ to the morphism of pointed sets\[ \xi \colon (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0})\overset {\exists !}{\to }(X'\mathbin {\textstyle \coprod _{Z'}}Y',p'_{0}) \]given by
\[ \xi (p)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \phi (x) & \text{if $p=[(0,x)]$},\\ \psi (y) & \text{if $p=[(1,y)]$} \end{cases} \]for each $p\in X\mathbin {\textstyle \coprod _{Z}}Y$, which is the unique morphism of pointed sets making the diagram
commute. -
2.
Associativity. Given a diagram
in $\mathsf{Sets}$, we have isomorphisms of pointed sets\[ (X\mathbin {\textstyle \coprod _{W}}Y)\mathbin {\textstyle \coprod _{V}}Z\cong (X\mathbin {\textstyle \coprod _{W}}Y)\mathbin {\textstyle \coprod _{Y}}(Y\mathbin {\textstyle \coprod _{V}}Z) \cong X\mathbin {\textstyle \coprod _{W}}(Y\mathbin {\textstyle \coprod _{V}}Z), \]where these pullbacks are built as in the diagrams
-
3.
Unitality. We have isomorphisms of sets
-
4.
Commutativity. We have an isomorphism of sets
-
5.
Interaction With Coproducts. We have
-
6.
Symmetric Monoidality. The triple $(\mathsf{Sets}_{*},\mathbin {\textstyle \coprod _{X}},(X,x_{0}))$ is a symmetric monoidal category.
6.3.4 Pushouts
Let $(X,x_{0})$, $(Y,y_{0})$, and $(Z,z_{0})$ be pointed sets and let $f\colon (Z,z_{0})\to (X,x_{0})$ and $g\colon (Z,z_{0})\to (Y,y_{0})$ be morphisms of pointed sets.
Concretely, the pushout of $(X,x_{0})$ and $(Y,y_{0})$ over $(Z,z_{0})$ along $(f,g)$ is the pair consisting of:
Firstly, we note that indeed $[x_{0}]=[y_{0}]$, as we have
since $f$ and $g$ are morphisms of pointed sets, with the relation $\mathord {\sim }$ on $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{Z}Y$ then identifying $x_{0}=f(z_{0})\sim g(z_{0})=y_{0}$.
We now claim that $(X\mathbin {\textstyle \coprod _{Z}}Y,p_{0})$ is the categorical pushout of $(X,x_{0})$ and $(Y,y_{0})$ over $(Z,z_{0})$ with respect to $(f,g)$ in $\mathsf{Sets}_{*}$. First we need to check that the relevant pushout diagram commutes, i.e. that we have
where $[(0,f(z))]=[(1,g(z))]$ by the definition of the relation $\mathord {\sim }$ on $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y$ (the coproduct of unpointed sets of $X$ and $Y$). Next, we prove that $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{Z}Y$ satisfies the universal property of the pushout. Suppose we have a diagram of the form
making the diagram
via
for each $p\in X\mathbin {\textstyle \coprod _{Z}}Y$, where the well-definedness of $\phi $ is proven in the same way as in the proof of Chapter 4: Constructions With Sets, Definition 4.2.4.1.1. Finally, we show that $\phi $ is indeed a morphism of pointed sets, as we have
or alternatively
where we use that $\iota _{1}$ (resp. $\iota _{2}$) is a morphism of pointed sets.
Let $(X,x_{0})$, $(Y,y_{0})$, $(Z,z_{0})$, and $(A,a_{0})$ be pointed sets.