6.3.4 Pushouts

    Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, and $\webleft (Z,z_{0}\webright )$ be pointed sets and let $f\colon \webleft (Z,z_{0}\webright )\to \webleft (X,x_{0}\webright )$ and $g\colon \webleft (Z,z_{0}\webright )\to \webleft (Y,y_{0}\webright )$ be morphisms of pointed sets.

    The pushout of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ along $\webleft (f,g\webright )$ is the pushout of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ along $\webleft (f,g\webright )$ in $\mathsf{Sets}_{*}$ as in Unresolved reference, Unresolved reference.

    Concretely, the pushout of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ along $\webleft (f,g\webright )$ is the pair consisting of:

    • The Colimit. The pointed set $\webleft (X\coprod _{f,Z,g}Y,p_{0}\webright )$, where:

      • The set $X\coprod _{f,Z,g}Y$ is the pushout (of unpointed sets) of $X$ and $Y$ over $Z$ with respect to $f$ and $g$;

      • We have $p_{0}=\webleft [x_{0}\webright ]=\webleft [y_{0}\webright ]$.

    • The Cocone. The morphisms of pointed sets

      \begin{align*} \mathrm{inj}_{1} & \colon \webleft (X,x_{0}\webright )\to \webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright ),\\ \mathrm{inj}_{2} & \colon \webleft (Y,y_{0}\webright )\to \webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright ) \end{align*}

      given by

      \begin{align*} \mathrm{inj}_{1}\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (0,x\webright )\webright ]\\ \mathrm{inj}_{2}\webleft (y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (1,y\webright )\webright ]\end{align*}

      for each $x\in X$ and each $y\in Y$.

    Proof of Unresolved reference.

    Firstly, we note that indeed $\webleft [x_{0}\webright ]=\webleft [y_{0}\webright ]$, as we have

    \begin{align*} x_{0} & = f\webleft (z_{0}\webright ),\\ y_{0} & = g\webleft (z_{0}\webright ) \end{align*}

    since $f$ and $g$ are morphisms of pointed sets, with the relation $\mathord {\sim }$ on $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{Z}Y$ then identifying $x_{0}=f\webleft (z_{0}\webright )\sim g\webleft (z_{0}\webright )=y_{0}$.

    We now claim that $\webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright )$ is the categorical pushout of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ with respect to $\webleft (f,g\webright )$ in $\mathsf{Sets}_{*}$. First we need to check that the relevant pushout diagram commutes, i.e. that we have

    Indeed, given $z\in Z$, we have

    \begin{align*} \webleft [\mathrm{inj}_{1}\circ f\webright ]\webleft (z\webright ) & = \mathrm{inj}_{1}\webleft (f\webleft (z\webright )\webright )\\ & = \webleft [\webleft (0,f\webleft (z\webright )\webright )\webright ]\\ & = \webleft [\webleft (1,g\webleft (z\webright )\webright )\webright ]\\ & = \mathrm{inj}_{2}\webleft (g\webleft (z\webright )\webright )\\ & = \webleft [\mathrm{inj}_{2}\circ g\webright ]\webleft (z\webright ),\end{align*}

    where $\webleft [\webleft (0,f\webleft (z\webright )\webright )\webright ]=\webleft [\webleft (1,g\webleft (z\webright )\webright )\webright ]$ by the definition of the relation $\mathord {\sim }$ on $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y$ (the coproduct of unpointed sets of $X$ and $Y$). Next, we prove that $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{Z}Y$ satisfies the universal property of the pushout. Suppose we have a diagram of the form

    in $\mathsf{Sets}_{*}$. Then there exists a unique morphism of pointed sets

    \[ \phi \colon \webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright )\to \webleft (P,*\webright ) \]

    making the diagram

    commute, being uniquely determined by the conditions

    \begin{align*} \phi \circ \mathrm{inj}_{1} & = \iota _{1},\\ \phi \circ \mathrm{inj}_{2} & = \iota _{2}\end{align*}

    via

    \[ \phi \webleft (p\webright )=\begin{cases} \iota _{1}\webleft (x\webright ) & \text{if $x=\webleft [\webleft (0,x\webright )\webright ]$,}\\ \iota _{2}\webleft (y\webright ) & \text{if $x=\webleft [\webleft (1,y\webright )\webright ]$} \end{cases} \]

    for each $p\in X\mathbin {\textstyle \coprod _{Z}}Y$, where the well-definedness of $\phi $ is proven in the same way as in the proof of Chapter 4: Constructions With Sets, Definition 4.2.4.1.1. Finally, we show that $\phi $ is indeed a morphism of pointed sets, as we have

    \begin{align*} \phi \webleft (p_{0}\webright ) & = \phi \webleft (\webleft [\webleft (0,x_{0}\webright )\webright ]\webright )\\ & = \iota _{1}\webleft (x_{0}\webright )\\ & = *, \end{align*}

    or alternatively

    \begin{align*} \phi \webleft (p_{0}\webright ) & = \phi \webleft (\webleft [\webleft (1,y_{0}\webright )\webright ]\webright )\\ & = \iota _{2}\webleft (y_{0}\webright )\\ & = *, \end{align*}

    where we use that $\iota _{1}$ (resp. $\iota _{2}$) is a morphism of pointed sets.

    Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, $\webleft (Z,z_{0}\webright )$, and $\webleft (A,a_{0}\webright )$ be pointed sets.

    1. 1.

      Functoriality. The assignment $\webleft (X,Y,Z,f,g\webright )\mapsto X\mathbin {\textstyle \coprod _{f,Z,g}}Y$ defines a functor

      \[ -_{1}\mathbin {\textstyle \coprod _{-_{3}}}-_{1}\colon \mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}\webright )\to \mathsf{Sets}_{*}, \]

      where $\mathcal{P}$ is the category that looks like this:

      In particular, the action on morphisms of $-_{1}\mathbin {\textstyle \coprod _{-_{3}}}-_{1}$ is given by sending a morphism
      in $\mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}_{*}\webright )$ to the morphism of pointed sets

      \[ \xi \colon \webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright )\overset {\exists !}{\to }\webleft (X'\mathbin {\textstyle \coprod _{Z'}}Y',p'_{0}\webright ) \]

      given by

      \[ \xi \webleft (p\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \phi \webleft (x\webright ) & \text{if $p=\webleft [\webleft (0,x\webright )\webright ]$},\\ \psi \webleft (y\webright ) & \text{if $p=\webleft [\webleft (1,y\webright )\webright ]$} \end{cases} \]

      for each $p\in X\mathbin {\textstyle \coprod _{Z}}Y$, which is the unique morphism of pointed sets making the diagram

      commute.

    2. 2.

      Associativity. Given a diagram

      in $\mathsf{Sets}$, we have isomorphisms of pointed sets

      \[ \webleft (X\mathbin {\textstyle \coprod _{W}}Y\webright )\mathbin {\textstyle \coprod _{V}}Z\cong \webleft (X\mathbin {\textstyle \coprod _{W}}Y\webright )\mathbin {\textstyle \coprod _{Y}}\webleft (Y\mathbin {\textstyle \coprod _{V}}Z\webright ) \cong X\mathbin {\textstyle \coprod _{W}}\webleft (Y\mathbin {\textstyle \coprod _{V}}Z\webright ), \]

      where these pullbacks are built as in the diagrams

    3. 3.

      Unitality. We have isomorphisms of sets

  • 4.

    Commutativity. We have an isomorphism of sets

  • 5.

    Interaction With Coproducts. We have

  • 6.

    Symmetric Monoidality. The triple $\webleft (\mathsf{Sets}_{*},\mathbin {\textstyle \coprod _{X}},\webleft (X,x_{0}\webright )\webright )$ is a symmetric monoidal category.

  • Item 1: Functoriality
    This is a special case of functoriality of co/limits, Unresolved reference, Unresolved reference of Unresolved reference, with the explicit expression for $\xi $ following from the commutativity of the cube pushout diagram.

    Item 2: Associativity
    This follows from Chapter 4: Constructions With Sets, Item 3 of Proposition 4.2.4.1.6.

    Item 3: Unitality
    This follows from Chapter 4: Constructions With Sets, Item 5 of Proposition 4.2.4.1.6.

    Item 4: Commutativity
    This follows from Chapter 4: Constructions With Sets, Item 6 of Proposition 4.2.4.1.6.

    Item 5: Interaction With Coproducts
    Omitted.

    Item 6: Symmetric Monoidality
    Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: