Map I. We define a map
\[ \Phi _{K}\colon \mathsf{Sets}_{*}\webleft (A\odot X,K\webright ) \to \mathsf{Sets}\webleft (A,\mathsf{Sets}_{*}\webleft (X,K\webright )\webright ) \]
by sending a morphism of pointed sets
\[ \xi \colon \webleft (A\odot X,a\odot x_{0}\webright )\to \webleft (K,k_{0}\webright ) \]
to the map of sets
where
\[ \xi _{a}\colon \webleft (X,x_{0}\webright )\to \webleft (K,k_{0}\webright ) \]
is the morphism of pointed sets defined by
\[ \xi _{a}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi \webleft (a\odot x\webright ) \]
for each $x\in X$. Note that we have
\begin{align*} \xi _{a}\webleft (x_{0}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi \webleft (a\odot x_{0}\webright )\\ & = k_{0},\end{align*}
so that $\xi _{a}$ is indeed a morphism of pointed sets, where we have used that $\xi $ is a morphism of pointed sets.