Map I. We define a map
\[ \Phi _{K}\colon \mathsf{Sets}_{*}\webleft (K,A\pitchfork X\webright )\to \mathsf{Sets}\webleft (A,\mathsf{Sets}_{*}\webleft (K,X\webright )\webright ), \]
by sending a morphism of pointed sets
\[ \xi \colon \webleft (K,k_{0}\webright )\to \webleft (A\pitchfork X,\webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]\webright ) \]
to the map of sets
where
\[ \xi _{a}\colon \webleft (K,k_{0}\webright )\to \webleft (X,x_{0}\webright ) \]
is the morphism of pointed sets defined by
\[ \xi _{a}\webleft (k\webright )=\begin{cases} x^{k}_{a} & \text{if $\xi \webleft (k\webright )\neq \webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]$,}\\ x_{0} & \text{if $\xi \webleft (k\webright )=\webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]$}\end{cases} \]
for each $k\in K$, where $x^{k}_{a}$ is the $a$th component of $\xi \webleft (k\webright )=\webleft [\webleft (x^{k}_{a}\webright )_{a\in A}\webright ]$. Note that:
-
(a)
The definition of $\xi _{a}\webleft (k\webright )$ is independent of the choice of equivalence class. Indeed, suppose we have
\begin{align*} \xi \webleft (k\webright ) & = \webleft [\webleft (x^{k}_{a}\webright )_{a\in A}\webright ]\\ & = \webleft [\webleft (y^{k}_{a}\webright )_{a\in A}\webright ] \end{align*}
with $x^{k}_{a}\neq y^{k}_{a}$ for some $a\in A$. Then there exist $a_{x},a_{y}\in A$ such that $x^{k}_{a_{x}}=y^{k}_{a_{y}}=x_{0}$. The equivalence relation $\mathord {\sim }$ on $\prod _{a\in A}X$ then forces
\begin{align*} \webleft [\webleft (x^{k}_{a}\webright )_{a\in A}\webright ] & = \webleft [\webleft (x_{0}\webright )_{a\in A}\webright ],\\ \webleft [\webleft (y^{k}_{a}\webright )_{a\in A}\webright ] & = \webleft [\webleft (x_{0}\webright )_{a\in A}\webright ], \end{align*}
however, and $\xi _{a}\webleft (k\webright )$ is defined to be $x_{0}$ in this case.
-
(b)
The map $\xi _{a}$ is indeed a morphism of pointed sets, as we have
\[ \xi _{a}\webleft (k_{0}\webright )=x_{0} \]
since $\xi \webleft (k_{0}\webright )=\webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]$ as $\xi $ is a morphism of pointed sets and $\xi _{a}\webleft (k_{0}\webright )$, defined to be the $a$th component of $\webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]$, is equal to $x_{0}$.