Map I. We define a map
\[ \Phi _{K}\colon \mathsf{Sets}_{*}\webleft (K,A\pitchfork X\webright )\to \mathsf{Sets}\webleft (A,\mathsf{Sets}_{*}\webleft (K,X\webright )\webright ), \]
by sending a morphism of pointed sets
\[ \xi \colon \webleft (K,k_{0}\webright )\to \webleft (A\pitchfork X,\webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]\webright ) \]
to the map of sets
where
\[ \xi _{a}\colon \webleft (K,k_{0}\webright )\to \webleft (X,x_{0}\webright ) \]
is the morphism of pointed sets defined by
\[ \xi _{a}\webleft (k\webright )=\begin{cases} x^{k}_{a} & \text{if $\xi \webleft (k\webright )\neq \webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]$,}\\ x_{0} & \text{if $\xi \webleft (k\webright )=\webleft [\webleft (x_{0}\webright )_{a\in A}\webright ]$}\end{cases} \]
for each $k\in K$, where $x^{k}_{a}$ is the $a$th component of $\xi \webleft (k\webright )=\webleft [\webleft (x^{k}_{a}\webright )_{a\in A}\webright ]$. Note that: