7.2.2 Cotensors of Pointed Sets by Sets

    Let $(X,x_{0})$ be a pointed set and let $A$ be a set.

    The cotensor of $(X,x_{0})$ by $A$1 is the cotensor $A\pitchfork (X,x_{0})$2 of $(X,x_{0})$ by $A$ as in Unresolved reference, Unresolved reference.


    1. 1Further Terminology: Also called the power of $(X,x_{0})$ by $A$.
    2. 2Further Notation: Often written $A\pitchfork X$ for simplicity.

    In detail, the cotensor of $(X,x_{0})$ by $A$ is the pointed set $A\pitchfork (X,x_{0})$ satisfying the following universal property:

    • (★)
    • We have a bijection
      \[ \mathsf{Sets}_{*}(K,A\pitchfork X)\cong \mathsf{Sets}(A,\mathsf{Sets}_{*}(K,X)), \]
      natural in $(K,k_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$.

    This universal property is in turn equivalent to the following one:

    • (★)
    • We have a bijection
      \[ \mathsf{Sets}_{*}(K,A\pitchfork X) \cong \mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}(A\times K,X), \]
      natural in $(K,k_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$, where $\mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}(A\times K,X)$ is the set defined by
      \[ \mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}(A\times K,X) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ f\in \mathsf{Sets}(A\times K,X)\ \middle |\ \begin{aligned} & \text{for each $a\in A$, we}\\ & \text{have $f(a,k_{0})=x_{0}$}\end{aligned} \right\} . \]

    Proof of the Equivalence in Remark 7.2.2.1.2.

    This follows from the bijection

    \[ \mathsf{Sets}(A,\mathsf{Sets}_{*}(K,X))\cong \mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}(A\times K,X), \]

    natural in $(K,k_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$ constructed in the proof of Remark 7.2.1.1.2.

    Concretely, the cotensor of $(X,x_{0})$ by $A$ is the pointed set $A\pitchfork (X,x_{0})$ consisting of:

    • The Underlying Set. The set $A\pitchfork X$ given by

      \[ A\pitchfork X\cong \bigwedge _{a\in A}(X,x_{0}), \]

      where $\bigwedge _{a\in A}(X,x_{0})$ is the smash product of the $A$-indexed family $((X,x_{0}))_{a\in A}$ of Definition 7.6.1.1.1.

    • The Basepoint. The point $[(x_{0})_{a\in A}]=[(x_{0},x_{0},x_{0},\ldots )]$ of $\bigwedge _{a\in A}(X,x_{0})$.

    We claim we have a bijection

    \[ \mathsf{Sets}_{*}(K,A\pitchfork X)\cong \mathsf{Sets}(A,\mathsf{Sets}_{*}(K,X)), \]

    natural in $(K,k_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$.

    1. 1.

      Map I. We define a map

      \[ \Phi _{K}\colon \mathsf{Sets}_{*}(K,A\pitchfork X)\to \mathsf{Sets}(A,\mathsf{Sets}_{*}(K,X)), \]

      by sending a morphism of pointed sets

      \[ \xi \colon (K,k_{0})\to (A\pitchfork X,[(x_{0})_{a\in A}]) \]

      to the map of sets

      where

      \[ \xi _{a}\colon (K,k_{0})\to (X,x_{0}) \]

      is the morphism of pointed sets defined by

      \[ \xi _{a}(k)=\begin{cases} x^{k}_{a} & \text{if $\xi (k)\neq [(x_{0})_{a\in A}]$,}\\ x_{0} & \text{if $\xi (k)=[(x_{0})_{a\in A}]$}\end{cases} \]

      for each $k\in K$, where $x^{k}_{a}$ is the $a$th component of $\xi (k)=[(x^{k}_{a})_{a\in A}]$. Note that:

      1. (a)

        The definition of $\xi _{a}(k)$ is independent of the choice of equivalence class. Indeed, suppose we have

        \begin{align*} \xi (k) & = [(x^{k}_{a})_{a\in A}]\\ & = [(y^{k}_{a})_{a\in A}] \end{align*}

        with $x^{k}_{a}\neq y^{k}_{a}$ for some $a\in A$. Then there exist $a_{x},a_{y}\in A$ such that $x^{k}_{a_{x}}=y^{k}_{a_{y}}=x_{0}$. The equivalence relation $\mathord {\sim }$ on $\prod _{a\in A}X$ then forces

        \begin{align*} [(x^{k}_{a})_{a\in A}] & = [(x_{0})_{a\in A}],\\ [(y^{k}_{a})_{a\in A}] & = [(x_{0})_{a\in A}], \end{align*}

        however, and $\xi _{a}(k)$ is defined to be $x_{0}$ in this case.

      2. (b)

        The map $\xi _{a}$ is indeed a morphism of pointed sets, as we have

        \[ \xi _{a}(k_{0})=x_{0} \]

        since $\xi (k_{0})=[(x_{0})_{a\in A}]$ as $\xi $ is a morphism of pointed sets and $\xi _{a}(k_{0})$, defined to be the $a$th component of $[(x_{0})_{a\in A}]$, is equal to $x_{0}$.

    2. 2.

      Map II. We define a map

      \[ \Psi _{K}\colon \mathsf{Sets}(A,\mathsf{Sets}_{*}(K,X))\to \mathsf{Sets}_{*}(K,A\pitchfork X), \]

      given by sending a map

      to the morphism of pointed sets

      \[ \xi ^{\dagger }\colon (K,k_{0})\to (A\pitchfork X,[(x_{0})_{a\in A}]) \]

      defined by

      \[ \xi ^{\dagger }(k)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[(\xi _{a}(k))_{a\in A}] \]

      for each $k\in K$. Note that $\xi ^{\dagger }$ is indeed a morphism of pointed sets, as we have

      \begin{align*} \xi ^{\dagger }(k_{0}) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[(\xi _{a}(k_{0}))_{a\in A}]\\ & = x_{0}, \end{align*}

      where we have used that $\xi _{a}\in \mathsf{Sets}_{*}(K,X)$ is a morphism of pointed sets for each $a\in A$.

    3. 3.

      Invertibility I. We claim that

      \[ \Psi _{K}\circ \Phi _{K}=\operatorname {\mathrm{id}}_{\mathsf{Sets}_{*}(K,A\pitchfork X)}. \]

      Indeed, given a morphism of pointed sets

      \[ \xi \colon (K,k_{0})\to (A\pitchfork X,[(x_{0})_{a\in A}]) \]

      we have

      \begin{align*} [\Psi _{K}\circ \Phi _{K}](\xi ) & = \Psi _{K}(\Phi _{K}(\xi ))\\ & = \Psi _{K}([\mspace {-3mu}[a\mapsto \xi _{a}]\mspace {-3mu}])\\ & = \Psi _{K}([\mspace {-3mu}[a'\mapsto \xi _{a'}]\mspace {-3mu}])\\ & = [\mspace {-3mu}[k\mapsto [(\mathrm{ev}_{a}([\mspace {-3mu}[a'\mapsto \xi _{a'}(k)]\mspace {-3mu}]))_{a\in A}]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[k\mapsto [(\xi _{a}(k))_{a\in A}]]\mspace {-3mu}].\end{align*}

      Now, we have two cases:

      1. (a)

        If $\xi (k)=[(x_{0})_{a\in A}]$, we have

        \begin{align*} [\Psi _{K}\circ \Phi _{K}](\xi ) & = [\mspace {-3mu}[k\mapsto [(\xi _{a}(k))_{a\in A}]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[k\mapsto [(x_{0})_{a\in A}]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[k\mapsto \xi (k)]\mspace {-3mu}]\\ & = \xi .\end{align*}
      2. (b)

        If $\xi (k)\neq [(x_{0})_{a\in A}]$ and $\xi (k)=[(x^{k}_{a})_{a\in A}]$ instead, we have

        \begin{align*} [\Psi _{K}\circ \Phi _{K}](\xi ) & = [\mspace {-3mu}[k\mapsto [(\xi _{a}(k))_{a\in A}]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[k\mapsto [(x^{k}_{a})_{a\in A}]]\mspace {-3mu}]\\ & = [\mspace {-3mu}[k\mapsto \xi (k)]\mspace {-3mu}]\\ & = \xi .\end{align*}

      In both cases, we have $[\Psi _{K}\circ \Phi _{K}](\xi )=\xi $, and thus we are done.

    4. 4.

      Invertibility II. We claim that

      \[ \Phi _{K}\circ \Psi _{K}=\operatorname {\mathrm{id}}_{\mathsf{Sets}(A,\mathsf{Sets}_{*}(K,X))}. \]

      Indeed, given a morphism $\xi \colon A\to \mathsf{Sets}_{*}(K,X)$, we have

      \begin{align*} [\Phi _{K}\circ \Psi _{K}](\xi ) & = \Phi _{K}(\Psi _{K}(\xi ))\\ & = \Phi _{K}([\mspace {-3mu}[k\mapsto [(\xi _{a}(k))_{a\in A}]]\mspace {-3mu}])\\ & = [\mspace {-3mu}[a\mapsto [\mspace {-3mu}[k\mapsto \xi _{a}(k)]\mspace {-3mu}]]\mspace {-3mu}]\\ & = \xi \end{align*}
    5. 5.

      Naturality of $\Psi $. We need to show that, given a morphism of pointed sets

      \[ \phi \colon (K,k_{0})\to (K',k'_{0}), \]

      the diagram

      commutes. Indeed, given a map of sets
      we have

      \begin{align*} [\Psi _{K}\circ (\phi ^{*})_{*}](\xi ) & = \Psi _{K}((\phi ^{*})_{*}(\xi ))\\ & = \Psi _{K}((\phi ^{*})_{*}([\mspace {-3mu}[a\mapsto \xi _{a}]\mspace {-3mu}]))\\ & = \Psi _{K}(([\mspace {-3mu}[a\mapsto \phi ^{*}(\xi _{a})]\mspace {-3mu}]))\\ & = \Psi _{K}(([\mspace {-3mu}[a\mapsto [\mspace {-3mu}[k\mapsto \xi _{a}(\phi (k))]\mspace {-3mu}]]\mspace {-3mu}]))\\ & = [\mspace {-3mu}[k\mapsto [(\xi _{a}(\phi (k)))_{a\in A}]]\mspace {-3mu}]\\ & = \phi ^{*}([\mspace {-3mu}[k'\mapsto [(\xi _{a}(k'))_{a\in A}]]\mspace {-3mu}])\\ & = \phi ^{*}(\Psi _{K'}(\xi ))\\ & = [\phi ^{*}\circ \Psi _{K'}](\xi ). \end{align*}
    6. 6.

      Naturality of $\Phi $. Since $\Psi $ is natural and $\Psi $ is a componentwise inverse to $\Phi $, it follows from Chapter 11: Categories, Item 2 of Proposition 11.9.7.1.2 that $\Phi $ is also natural.

    This finishes the proof.

    Let $(X,x_{0})$ be a pointed set and let $A$ be a set.

    1. 1.

      Functoriality. The assignments $A,(X,x_{0}),(A,(X,x_{0}))$ define functors

      \[ \begin{array}{ccc} A\pitchfork -\colon \mkern -15mu & \mathsf{Sets}\mathrlap {{}_{*}} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -\pitchfork X\colon \mkern -15mu & \mathsf{Sets}^{\mathrlap {\mathsf{op}}} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -_{1}\pitchfork -_{2}\colon \mkern -15mu & \mathsf{Sets}^{\mathsf{op}}\times \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*}. \end{array} \]

      In particular, given:

      • A map of sets $f\colon A\to B$;

      • A pointed map $\phi \colon (X,x_{0})\to (Y,y_{0})$;

      the induced map

      \[ f\odot \phi \colon A\pitchfork X\to B\pitchfork Y \]

      is given by

      \[ [f\odot \phi ]([(x_{a})_{a\in A}])\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[(\phi (x_{f(a)}))_{a\in A}] \]

      for each $[(x_{a})_{a\in A}]\in A\pitchfork X$.

    2. 2.

      Adjointness I. We have an adjunction

      witnessed by a bijection

      \[ \mathsf{Sets}^{\mathsf{op}}_{*}(A\pitchfork X,K)\cong \mathsf{Sets}(A,\mathsf{Sets}_{*}(K,X)), \]

      i.e. by a bijection

      \[ \mathsf{Sets}_{*}(K,A\pitchfork X)\cong \mathsf{Sets}(A,\mathsf{Sets}_{*}(K,X)), \]

      natural in $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$ and $X,Y\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$.

  • 3.

    Adjointness II. We have an adjunctions

    witnessed by a bijection

    \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(A\odot X,Y)\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X,A\pitchfork Y), \]

    natural in $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$ and $X,Y\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$.

  • 4.

    As a Weighted Limit. We have

    \[ A\pitchfork X\cong \operatorname {\mathrm{lim}}^{[A]}(X), \]

    where in the right hand side we write:

    • $A$ for the functor $A\colon \mathrm{pt}\to \mathsf{Sets}$ picking $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$;

    • $X$ for the functor $X\colon \mathrm{pt}\to \mathsf{Sets}_{*}$ picking $(X,x_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$.

  • 5.

    Iterated Cotensors. We have an isomorphism of pointed sets

    \[ A\pitchfork (B\pitchfork X)\cong (A\times B)\pitchfork X, \]

    natural in $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$ and $(X,x_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$.

  • 6.

    Commutativity With Homs. We have natural isomorphisms

    \begin{align*} A\pitchfork \mathsf{Sets}_{*}(X,-) & \cong \mathsf{Sets}_{*}(A\odot X,-),\\ A\pitchfork \mathsf{Sets}_{*}(-,Y) & \cong \mathsf{Sets}_{*}(-,A\pitchfork Y). \end{align*}
  • 7.

    The Cotensor Evaluation Map. For each $X,Y\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$, we have a map

    \[ \mathrm{ev}^{\pitchfork }_{X,Y}\colon X\to \mathsf{Sets}_{*}(X,Y)\pitchfork Y, \]

    natural in $X,Y\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$, and given by

    \[ \mathrm{ev}^{\pitchfork }_{X,Y}(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[(f(x))_{f\in \mathsf{Sets}_{*}(X,Y)}] \]

    for each $x\in X$.

  • 8.

    The Cotensor Coevaluation Map. For each $X\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$ and each $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, we have a map

    \[ \mathrm{coev}^{\pitchfork }_{A,X}\colon A\to \mathsf{Sets}_{*}(A\pitchfork X,X), \]

    natural in $X\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$ and $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, and given by

    \[ \mathrm{coev}^{\pitchfork }_{A,X}(a)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[[(x_{b})_{b\in A}]\mapsto x_{a}]\mspace {-3mu}] \]

    for each $a\in A$.

  • Item 1: Functoriality
    This is the special case of Unresolved reference, Unresolved reference of Unresolved reference for $\mathcal{C}=\mathsf{Sets}_{*}$.

    Item 2: Adjointness I
    This is simply a rephrasing of Definition 7.2.2.1.1.

    Item 3: : Adjointness II
    This is the special case of Unresolved reference, Unresolved reference of Unresolved reference for $\mathcal{C}=\mathsf{Sets}_{*}$.

    Item 4: As a Weighted Limit
    This is the special case of Unresolved reference, Unresolved reference of Unresolved reference for $\mathcal{C}=\mathsf{Sets}_{*}$.

    Item 5: Iterated Cotensors
    This is the special case of Unresolved reference, Unresolved reference of Unresolved reference for $\mathcal{C}=\mathsf{Sets}_{*}$.

    Item 6: Commutativity With Homs
    This is the special case of Unresolved reference, Unresolved reference of Unresolved reference for $\mathcal{C}=\mathsf{Sets}_{*}$.

    Item 7: The Cotensor Evaluation Map
    This is the special case of Unresolved reference, Unresolved reference of Unresolved reference for $\mathcal{C}=\mathsf{Sets}_{*}$.

    Item 8: The Cotensor Coevaluation Map
    This is the special case of Unresolved reference, Unresolved reference of Unresolved reference for $\mathcal{C}=\mathsf{Sets}_{*}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: