The map $f\wedge g$ comes from Chapter 10: Conditions on Relations, Item 4 of Proposition 10.6.2.1.3 via the map
\[ f\wedge g\colon X\times Y\to A\wedge B \]
sending $(x,y)$ to $f(x)\wedge g(y)$, which we need to show satisfies
\[ [f\wedge g](x,y)=[f\wedge g](x',y') \]
for each $(x,y),(x',y')\in X\times Y$ with $(x,y)\sim _{R}(x',y')$, where $\mathord {\sim }_{R}$ is the relation constructing $X\wedge Y$ as
\[ X\wedge Y\cong (X\times Y)/\mathord {\sim }_{R} \]
in Construction 7.5.1.1.4. The condition defining $\mathord {\sim }$ is that at least one of the following conditions is satisfied:
-
1.
We have $x=x'$ and $y=y'$;
-
2.
Both of the following conditions are satisfied:
-
(a)
We have $x=x_{0}$ or $y=y_{0}$.
-
(b)
We have $x'=x_{0}$ or $y'=y_{0}$.
We have five cases:
-
1.
In the first case, we clearly have
\[ [f\wedge g](x,y)=[f\wedge g](x',y') \]
since $x=x'$ and $y=y'$.
-
2.
If $x=x_{0}$ and $x'=x_{0}$, we have
\begin{align*} [f\wedge g](x_{0},y) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f(x_{0})\wedge g(y)\\ & = a_{0}\wedge g(y)\\ & = a_{0}\wedge g(y')\\ & = f(x_{0})\wedge g(y')\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[f\wedge g](x_{0},y’).\end{align*}
-
3.
If $x=x_{0}$ and $y'=y_{0}$, we have
\begin{align*} [f\wedge g](x_{0},y) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f(x_{0})\wedge g(y)\\ & = a_{0}\wedge g(y)\\ & = a_{0}\wedge b_{0}\\ & = f(x')\wedge b_{0}\\ & = f(x')\wedge g(y_{0})\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[f\wedge g](x’,y_{0}).\end{align*}
-
4.
If $y=y_{0}$ and $x'=x_{0}$, we have
\begin{align*} [f\wedge g](x,y_{0}) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f(x)\wedge g(y_{0})\\ & = f(x)\wedge b_{0}\\ & = a_{0}\wedge b_{0}\\ & = a_{0}\wedge g(y')\\ & = f(x_{0})\wedge g(y')\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[f\wedge g](x_{0},y’).\end{align*}
-
5.
If $y=y_{0}$ and $y'=y_{0}$, we have
\begin{align*} [f\wedge g](x,y_{0}) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f(x)\wedge g(y_{0})\\ & = f(x)\wedge b_{0}\\ & = f(x')\wedge b_{0}\\ & = f(x)\wedge g(y_{0})\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[f\wedge g](x’,y_{0}).\end{align*}
Thus $f\wedge g$ is well-defined. Next, we claim that $\wedge $ preserves identities and composition:
-
•
Preservation of Identities. We have
\begin{align*} [\operatorname {\mathrm{id}}_{X}\wedge \operatorname {\mathrm{id}}_{Y}](x\wedge y) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{X}(x)\wedge \operatorname {\mathrm{id}}_{Y}(y)\\ & = x\wedge y\\ & = [\operatorname {\mathrm{id}}_{X\wedge Y}](x\wedge y) \end{align*}
for each $x\wedge y\in X\wedge Y$, and thus
\[ \operatorname {\mathrm{id}}_{X}\wedge \operatorname {\mathrm{id}}_{Y}=\operatorname {\mathrm{id}}_{X\wedge Y}. \]
-
•
Preservation of Composition. Given pointed maps
\begin{align*} f & \colon (X,x_{0}) \to (X',x'_{0}),\\ h & \colon (X',x'_{0}) \to (X'',x''_{0}),\\ g & \colon (Y,y_{0}) \to (Y',y'_{0}),\\ k & \colon (Y’,y’_{0}) \to (Y^{\prime \prime },y^{\prime \prime }_{0}), \end{align*}
we have
\begin{align*} [(h\circ f)\wedge (k\circ g)](x\wedge y) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h(f(x))\wedge k(g(y))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[h\wedge k](f(x)\wedge g(y))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[h\wedge k]([f\wedge g](x\wedge y))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[(h\wedge k)\circ (f\wedge g)](x\wedge y) \end{align*}
for each $x\wedge y\in X\wedge Y$, and thus
\[ (h\circ f)\wedge (k\circ g)=(h\wedge k)\circ (f\wedge g). \]
This finishes the proof.
We prove only the adjunction $-\wedge Y\dashv \boldsymbol {\mathsf{Sets}}_{*}(Y,-)$, witnessed by a natural bijection
\[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X\wedge Y,Z)\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X,\boldsymbol {\mathsf{Sets}}_{*}(Y,Z)), \]
as the proof of the adjunction $X\wedge -\dashv \boldsymbol {\mathsf{Sets}}_{*}(X,-)$ is similar. We claim we have a bijection
\[ \operatorname {\mathrm{Hom}}^{\otimes }_{\mathsf{Sets}_{*}}(X\times Y,Z)\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X,\boldsymbol {\mathsf{Sets}}_{*}(Y,Z)) \]
natural in $(X,x_{0}),(Y,y_{0}),(Z,z_{0})\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}_{*})$, impliying the desired adjunction. Indeed, this bijection is a restriction of the bijection
\[ \mathsf{Sets}(X\times Y,Z)\cong \mathsf{Sets}(X,\mathsf{Sets}(Y,Z)) \]
of Chapter 4: Constructions With Sets, Item 2 of Proposition 4.1.3.1.3:
-
•
A map
\[ \xi \colon X\times Y\to Z \]
in $\operatorname {\mathrm{Hom}}^{\otimes }_{\mathsf{Sets}_{*}}(X\times Y,Z)$ gets sent to the pointed map
where $\xi ^{\dagger }_{x}\colon Y\to Z$ is the map defined by
\[ \xi ^{\dagger }_{x}(y)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi (x,y) \]
for each $y\in Y$, where:
-
•
The map $\xi ^{\dagger }$ is indeed pointed, as we have
\begin{align*} \xi ^{\dagger }_{x_{0}}(y) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi (x_{0},y)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}z_{0}\end{align*}
for each $y\in Y$. Thus $\xi ^{\dagger }_{x_{0}}=\Delta _{z_{0}}$ and $\xi ^{\dagger }$ is pointed.
-
•
The map $\xi ^{\dagger }_{x}$ indeed lies in $\boldsymbol {\mathsf{Sets}}_{*}(Y,Z)$, as we have
\begin{align*} \xi ^{\dagger }_{x}(y_{0}) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi (x,y_{0})\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}z_{0}.\end{align*}
-
•
Conversely, a map
in $\operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}(X,\boldsymbol {\mathsf{Sets}}_{*}(Y,Z))$ gets sent to the map
\[ \xi ^{\dagger }\colon X\times Y\to Z \]
defined by
\[ \xi ^{\dagger }(x,y)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi _{x}(y) \]
for each $(x,y)\in X\times Y$, which indeed lies in $\operatorname {\mathrm{Hom}}^{\otimes }_{\mathsf{Sets}_{*}}(X\times Y,Z)$, as:
-
•
Left Bilinearity. We have
\begin{align*} \xi ^{\dagger }(x_{0},y) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi _{x_{0}}(y)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Delta _{z_{0}}(y)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}z_{0}\end{align*}
for each $y\in Y$, since $\xi _{x_{0}}=\Delta _{z_{0}}$ as $\xi $ is assumed to be a pointed map.
-
•
Right Bilinearity. We have
\begin{align*} \xi ^{\dagger }(x,y_{0}) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi _{x}(y_{0})\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}z_{0}\end{align*}
for each $x\in X$, since $\xi _{x}\in \boldsymbol {\mathsf{Sets}}_{*}(Y,Z)$ is a morphism of pointed sets.
This finishes the proof.
This follows from Item 2 and
,
of
.
Following the description of Chapter 4: Constructions With Sets, Remark 4.2.4.1.3, we have
\[ \mathrm{pt}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{X\vee Y}(X\times Y)\cong (\mathrm{pt}\times (X\times Y))/\mathord {\sim }, \]
where $\mathord {\sim }$ identifies the elemenet $\star $ in $\mathrm{pt}$ with all elements of the form $(x_{0},y)$ and $(x,y_{0})$ in $X\times Y$. Thus Chapter 10: Conditions on Relations, Item 4 of Proposition 10.6.2.1.3 coupled with Remark 7.5.1.1.8 then gives us a well-defined map
\[ \mathrm{pt}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{X\vee Y}(X\times Y)\to X\wedge Y \]
via $[(\star ,(x,y))]\mapsto x\wedge y$, with inverse
\[ X\wedge Y\to \mathrm{pt}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{X\vee Y}(X\times Y) \]
given by $x\wedge y\mapsto [(\star ,(x,y))]$.
Item 5: Distributivity Over Wedge Sums
This follows from Proposition 7.5.9.1.1,
,
of
, and the fact that $\vee $ is the coproduct in $\mathsf{Sets}_{*}$ (Chapter 6: Pointed Sets, Definition 6.3.3.1.1).