7.5.1 Foundations

    Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets.

    The smash product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$1 is the pointed set $X\wedge Y$2 satisfying the bijection

    \[ \mathsf{Sets}_{*}\webleft (X\wedge Y,Z\webright ) \cong \operatorname {\mathrm{Hom}}^{\otimes }_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright ), \]

    naturally in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$.


    1. 1Further Terminology: In the context of monoids with zero as models for $\mathbb {F}_{1}$-algebras, the smash product $X\wedge Y$ is also called the tensor product of $\mathbb {F}_{1}$-modules of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ or the tensor product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\mathbb {F}_{1}$.
    2. 2Further Notation: In the context of monoids with zero as models for $\mathbb {F}_{1}$-algebras, the smash product $X\wedge Y$ is also denoted $X\otimes _{\mathbb {F}_{1}}Y$.

    That is to say, the smash product of pointed sets is defined so as to induce a bijection between the following data:

    • Pointed maps $f\colon X\wedge Y\to Z$.

    • Maps of sets $f\colon X\times Y\to Z$ satisfying

      \begin{align*} f\webleft (x_{0},y\webright ) & = z_{0},\\ f\webleft (x,y_{0}\webright ) & = z_{0} \end{align*}

      for each $x\in X$ and each $y\in Y$.

    The smash product of pointed sets may be described as follows:

    • The smash product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ is the pair $\webleft (\webleft (X\wedge Y,x_{0}\wedge y_{0}\webright ),\iota \webright )$ consisting of

      • A pointed set $\webleft (X\wedge Y,x_{0}\wedge y_{0}\webright )$;

      • A bilinear morphism of pointed sets $\iota \colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )\to X\wedge Y$;

      satisfying the following universal property:

      • (★)
      • Given another such pair $\webleft (\webleft (Z,z_{0}\webright ),f\webright )$ consisting of
        • A pointed set $\webleft (Z,z_{0}\webright )$;

        • A bilinear morphism of pointed sets $f\colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )\to X\wedge Y$;

        there exists a unique morphism of pointed sets $X\wedge Y\overset {\exists !}{\to }Z$ making the diagram
        commute.

    Concretely, the smash product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ is the pointed set $\webleft (X\wedge Y,x_{0}\wedge y_{0}\webright )$ consisting of:

    • The Underlying Set. The set $X\wedge Y$ defined by

      \[ X\wedge Y\cong \webleft (X\times Y\webright )/\mathord {\sim }_{R}, \]

      where $\mathord {\sim }_{R}$ is the equivalence relation on $X\times Y$ obtained by declaring

      \begin{align*} \webleft (x_{0},y\webright ) & \sim _{R} \webleft (x_{0},y'\webright ),\\ \webleft (x,y_{0}\webright ) & \sim _{R} \webleft (x’,y_{0}\webright ) \end{align*}

      for each $x,x'\in X$ and each $y,y'\in Y$.

    • The Basepoint. The element $\webleft [\webleft (x_{0},y_{0}\webright )\webright ]$ of $X\wedge Y$ given by the equivalence class of $\webleft (x_{0},y_{0}\webright )$ under the equivalence relation $\mathord {\sim }$ on $X\times Y$.

    By Chapter 10: Conditions on Relations, Unresolved reference, we have a natural bijection

    \[ \mathsf{Sets}_{*}\webleft (X\wedge Y,Z\webright ) \cong \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright ), \]

    where $\operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )$ is the set

    \[ \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ f\in \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )\ \middle |\ \begin{aligned} & \text{for each $x,y\in X$, if}\\ & \text{$\webleft (x,y\webright )\sim _{R}\webleft (x',y'\webright )$, then}\\ & \text{$f\webleft (x,y\webright )=f\webleft (x',y'\webright )$}\end{aligned} \right\} . \]
    However, the condition $\webleft (x,y\webright )\sim _{R}\webleft (x',y'\webright )$ only holds when:

    1. 1.

      We have $x=x'$ and $y=y'$.

    2. 2.

      The following conditions are satisfied:

      1. (a)

        We have $x=x_{0}$ or $y=y_{0}$.

      2. (b)

        We have $x'=x_{0}$ or $y'=y_{0}$.

    So, given $f\in \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )$ with a corresponding $\overline{f}\colon X\wedge Y\to Z$, the latter case above implies

    \begin{align*} f\webleft (x_{0},y\webright ) & = f\webleft (x,y_{0}\webright )\\ & = f\webleft (x_{0},y_{0}\webright ), \end{align*}

    and since $\overline{f}\colon X\wedge Y\to Z$ is a pointed map, we have

    \begin{align*} f\webleft (x_{0},y_{0}\webright ) & = \overline{f}\webleft (x_{0},y_{0}\webright )\\ & = z_{0}. \end{align*}

    Thus the elements $f$ in $\operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )$ are precisely those functions $f\colon X\times Y\to Z$ satisfying the equalities

    \begin{align*} f\webleft (x_{0},y\webright ) & = z_{0},\\ f\webleft (x,y_{0}\webright ) & = z_{0} \end{align*}

    for each $x\in X$ and each $y\in Y$, giving an equality

    \[ \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )=\operatorname {\mathrm{Hom}}^{\otimes }_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright ) \]

    of sets, which when composed with our earlier isomorphism

    \[ \mathsf{Sets}_{*}\webleft (X\wedge Y,Z\webright ) \cong \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright ), \]

    gives our desired natural bijection, finishing the proof.

    It is also somewhat common to write

    \[ X\wedge Y\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\frac{X\times Y}{X\vee Y}, \]

    identifying $X\vee Y$ with the subspace $\webleft (\left\{ x_{0}\right\} \times Y\webright )\cup \webleft (X\times \left\{ y_{0}\right\} \webright )$ of $X\times Y$, and having the quotient be defined by declaring $\webleft (x,y\webright )\sim \webleft (x',y'\webright )$ iff we have $\webleft (x,y\webright ),\webleft (x',y'\webright )\in X\vee Y$.

    Alternatively, the smash product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ may be constructed as the pointed set $X\wedge Y$ given by

    \begin{align*} X\wedge Y & \cong \bigvee _{x\in X^{-}}Y\\ & \cong \bigvee _{y\in Y^{-}}X.\end{align*}

    Indeed, since $X\cong \bigvee _{x\in X^{-}}S^{0}$, we have

    \begin{align*} X\wedge Y & \cong \webleft (\bigvee _{x\in X^{-}}S^{0}\webright )\wedge Y\\ & \cong \bigvee _{x\in X^{-}}S^{0}\wedge Y\\ & \cong \bigvee _{x\in X^{-}}Y, \end{align*}

    where we have used that $\wedge $ preserves colimits in both variables by Unresolved reference for the second isomorphism above, since it has right adjoints in both variables by Item 2.

    A similar proof applies to the isomorphism $X\wedge Y\cong \bigvee _{y\in Y^{-}}X$.

    We write $x\wedge y$ for the element $\webleft [\webleft (x,y\webright )\webright ]$ of $X\wedge Y\cong X\times Y/\mathord {\sim }$.

    Employing the notation introduced in Notation 7.5.1.1.7, we have

    \begin{align*} x_{0}\wedge y_{0} & = x\wedge y_{0},\\ & = x_{0}\wedge y\end{align*}

    for each $x\in X$ and each $y\in Y$, and

    \begin{align*} x\wedge y_{0} & = x'\wedge y_{0},\\ x_{0}\wedge y & = x_{0}\wedge y’\end{align*}

    for each $x,x'\in X$ and each $y,y'\in Y$.

    Here are some examples of smash products of pointed sets.

    1. 1.

      Smashing With $\mathrm{pt}$. For any pointed set $X$, we have isomorphisms of pointed sets

      \begin{align*} \mathrm{pt}\wedge X & \cong \mathrm{pt},\\ X\wedge \mathrm{pt}& \cong \mathrm{pt}. \end{align*}
    2. 2.

      Smashing With $S^{0}$. For any pointed set $X$, we have isomorphisms of pointed sets

      \begin{align*} S^{0}\wedge X & \cong X,\\ X\wedge S^{0} & \cong X. \end{align*}

    Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets.

  • 1.

    Functoriality. The assignments $X,Y,\webleft (X,Y\webright )\mapsto X\wedge Y$ define functors

    \[ \begin{array}{ccc} X\wedge -\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -\wedge Y\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -_{1}\wedge -_{2}\colon \mkern -15mu & \mathsf{Sets}_{*}\times \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*}. \end{array} \]

    In particular, given pointed maps

    \begin{align*} f & \colon \webleft (X,x_{0}\webright ) \to \webleft (A,a_{0}\webright ),\\ g & \colon \webleft (Y,y_{0}\webright ) \to \webleft (B,b_{0}\webright ), \end{align*}

    the induced map

    \[ f\wedge g\colon X\wedge Y\to A\wedge B \]

    is given by

    \[ \webleft [f\wedge g\webright ]\webleft (x\wedge y\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x\webright )\wedge g\webleft (y\webright ) \]

    for each $x\wedge y\in X\wedge Y$.

  • 2.

    Adjointness. We have adjunctions

    witnessed by bijections

    \begin{align*} \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X\wedge Y,Z\webright ) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X,\boldsymbol {\mathsf{Sets}}_{*}\webleft (Y,Z\webright )\webright ),\\ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X\wedge Y,Z\webright ) & \cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X,\boldsymbol {\mathsf{Sets}}_{*}\webleft (A,Z\webright )\webright ), \end{align*}

    natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$.

  • 3.

    Enriched Adjointness. We have $\mathsf{Sets}_{*}$-enriched adjunctions

    witnessed by isomorphisms of pointed sets

    \begin{align*} \boldsymbol {\mathsf{Sets}}_{*}\webleft (X\wedge Y,Z\webright ) & \cong \boldsymbol {\mathsf{Sets}}_{*}\webleft (X,\boldsymbol {\mathsf{Sets}}_{*}\webleft (Y,Z\webright )\webright ),\\ \boldsymbol {\mathsf{Sets}}_{*}\webleft (X\wedge Y,Z\webright ) & \cong \boldsymbol {\mathsf{Sets}}_{*}\webleft (X,\boldsymbol {\mathsf{Sets}}_{*}\webleft (A,Z\webright )\webright ), \end{align*}

    natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\boldsymbol {\mathsf{Sets}}_{*}\webright )$.

  • 4.

    As a Pushout. We have an isomorphism

    natural in $X,Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$, where the pushout is taken in $\mathsf{Sets}$, and the embedding $\iota \colon X\vee Y\hookrightarrow X\times Y$ is defined following Remark 7.5.1.1.5.

  • 5.

    Distributivity Over Wedge Sums. We have isomorphisms of pointed sets

    \begin{align*} X\wedge \webleft (Y\vee Z\webright ) & \cong \webleft (X\wedge Y\webright )\vee \webleft (X\wedge Z\webright ),\\ \webleft (X\vee Y\webright )\wedge Z & \cong \webleft (X\wedge Z\webright )\vee \webleft (Y\wedge Z\webright ), \end{align*}

    natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$.

  • Item 1: Functoriality
    The map $f\wedge g$ comes from Chapter 10: Conditions on Relations, Item 4 of Proposition 10.6.2.1.3 via the map

    \[ f\wedge g\colon X\times Y\to A\wedge B \]

    sending $\webleft (x,y\webright )$ to $f\webleft (x\webright )\wedge g\webleft (y\webright )$, which we need to show satisfies

    \[ \webleft [f\wedge g\webright ]\webleft (x,y\webright )=\webleft [f\wedge g\webright ]\webleft (x',y'\webright ) \]

    for each $\webleft (x,y\webright ),\webleft (x',y'\webright )\in X\times Y$ with $\webleft (x,y\webright )\sim _{R}\webleft (x',y'\webright )$, where $\mathord {\sim }_{R}$ is the relation constructing $X\wedge Y$ as

    \[ X\wedge Y\cong \webleft (X\times Y\webright )/\mathord {\sim }_{R} \]

    in Construction 7.5.1.1.4. The condition defining $\mathord {\sim }$ is that at least one of the following conditions is satisfied:

    1. 1.

      We have $x=x'$ and $y=y'$;

    2. 2.

      Both of the following conditions are satisfied:

      1. (a)

        We have $x=x_{0}$ or $y=y_{0}$.

      2. (b)

        We have $x'=x_{0}$ or $y'=y_{0}$.

    We have five cases:

    1. 1.

      In the first case, we clearly have

      \[ \webleft [f\wedge g\webright ]\webleft (x,y\webright )=\webleft [f\wedge g\webright ]\webleft (x',y'\webright ) \]

      since $x=x'$ and $y=y'$.

    2. 2.

      If $x=x_{0}$ and $x'=x_{0}$, we have

      \begin{align*} \webleft [f\wedge g\webright ]\webleft (x_{0},y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x_{0}\webright )\wedge g\webleft (y\webright )\\ & = a_{0}\wedge g\webleft (y\webright )\\ & = a_{0}\wedge g\webleft (y'\webright )\\ & = f\webleft (x_{0}\webright )\wedge g\webleft (y'\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [f\wedge g\webright ]\webleft (x_{0},y’\webright ).\end{align*}
    3. 3.

      If $x=x_{0}$ and $y'=y_{0}$, we have

      \begin{align*} \webleft [f\wedge g\webright ]\webleft (x_{0},y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x_{0}\webright )\wedge g\webleft (y\webright )\\ & = a_{0}\wedge g\webleft (y\webright )\\ & = a_{0}\wedge b_{0}\\ & = f\webleft (x'\webright )\wedge b_{0}\\ & = f\webleft (x'\webright )\wedge g\webleft (y_{0}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [f\wedge g\webright ]\webleft (x’,y_{0}\webright ).\end{align*}
    4. 4.

      If $y=y_{0}$ and $x'=x_{0}$, we have

      \begin{align*} \webleft [f\wedge g\webright ]\webleft (x,y_{0}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x\webright )\wedge g\webleft (y_{0}\webright )\\ & = f\webleft (x\webright )\wedge b_{0}\\ & = a_{0}\wedge b_{0}\\ & = a_{0}\wedge g\webleft (y'\webright )\\ & = f\webleft (x_{0}\webright )\wedge g\webleft (y'\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [f\wedge g\webright ]\webleft (x_{0},y’\webright ).\end{align*}
    5. 5.

      If $y=y_{0}$ and $y'=y_{0}$, we have

      \begin{align*} \webleft [f\wedge g\webright ]\webleft (x,y_{0}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x\webright )\wedge g\webleft (y_{0}\webright )\\ & = f\webleft (x\webright )\wedge b_{0}\\ & = f\webleft (x'\webright )\wedge b_{0}\\ & = f\webleft (x\webright )\wedge g\webleft (y_{0}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [f\wedge g\webright ]\webleft (x’,y_{0}\webright ).\end{align*}

    Thus $f\wedge g$ is well-defined. Next, we claim that $\wedge $ preserves identities and composition:

    • Preservation of Identities. We have

      \begin{align*} \webleft [\operatorname {\mathrm{id}}_{X}\wedge \operatorname {\mathrm{id}}_{Y}\webright ]\webleft (x\wedge y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{X}\webleft (x\webright )\wedge \operatorname {\mathrm{id}}_{Y}\webleft (y\webright )\\ & = x\wedge y\\ & = \webleft [\operatorname {\mathrm{id}}_{X\wedge Y}\webright ]\webleft (x\wedge y\webright ) \end{align*}

      for each $x\wedge y\in X\wedge Y$, and thus

      \[ \operatorname {\mathrm{id}}_{X}\wedge \operatorname {\mathrm{id}}_{Y}=\operatorname {\mathrm{id}}_{X\wedge Y}. \]
    • Preservation of Composition. Given pointed maps

      \begin{align*} f & \colon \webleft (X,x_{0}\webright ) \to \webleft (X',x'_{0}\webright ),\\ h & \colon \webleft (X',x'_{0}\webright ) \to \webleft (X'',x''_{0}\webright ),\\ g & \colon \webleft (Y,y_{0}\webright ) \to \webleft (Y',y'_{0}\webright ),\\ k & \colon \webleft (Y’,y’_{0}\webright ) \to \webleft (Y^{\prime \prime },y^{\prime \prime }_{0}\webright ), \end{align*}

      we have

      \begin{align*} \webleft [\webleft (h\circ f\webright )\wedge \webleft (k\circ g\webright )\webright ]\webleft (x\wedge y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}h\webleft (f\webleft (x\webright )\webright )\wedge k\webleft (g\webleft (y\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [h\wedge k\webright ]\webleft (f\webleft (x\webright )\wedge g\webleft (y\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [h\wedge k\webright ]\webleft (\webleft [f\wedge g\webright ]\webleft (x\wedge y\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (h\wedge k\webright )\circ \webleft (f\wedge g\webright )\webright ]\webleft (x\wedge y\webright ) \end{align*}

      for each $x\wedge y\in X\wedge Y$, and thus

      \[ \webleft (h\circ f\webright )\wedge \webleft (k\circ g\webright )=\webleft (h\wedge k\webright )\circ \webleft (f\wedge g\webright ). \]

    This finishes the proof.

    Item 2: Adjointness
    We prove only the adjunction $-\wedge Y\dashv \boldsymbol {\mathsf{Sets}}_{*}\webleft (Y,-\webright )$, witnessed by a natural bijection

    \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X\wedge Y,Z\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X,\boldsymbol {\mathsf{Sets}}_{*}\webleft (Y,Z\webright )\webright ), \]

    as the proof of the adjunction $X\wedge -\dashv \boldsymbol {\mathsf{Sets}}_{*}\webleft (X,-\webright )$ is similar. We claim we have a bijection

    \[ \operatorname {\mathrm{Hom}}^{\otimes }_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X,\boldsymbol {\mathsf{Sets}}_{*}\webleft (Y,Z\webright )\webright ) \]

    natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$, impliying the desired adjunction. Indeed, this bijection is a restriction of the bijection

    \[ \mathsf{Sets}\webleft (X\times Y,Z\webright )\cong \mathsf{Sets}\webleft (X,\mathsf{Sets}\webleft (Y,Z\webright )\webright ) \]

    of Chapter 4: Constructions With Sets, Item 2 of Proposition 4.1.3.1.3:

    • A map

      \[ \xi \colon X\times Y\to Z \]

      in $\operatorname {\mathrm{Hom}}^{\otimes }_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright )$ gets sent to the pointed map

      where $\xi ^{\dagger }_{x}\colon Y\to Z$ is the map defined by

      \[ \xi ^{\dagger }_{x}\webleft (y\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi \webleft (x,y\webright ) \]

      for each $y\in Y$, where:

      • The map $\xi ^{\dagger }$ is indeed pointed, as we have

        \begin{align*} \xi ^{\dagger }_{x_{0}}\webleft (y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi \webleft (x_{0},y\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}z_{0}\end{align*}

        for each $y\in Y$. Thus $\xi ^{\dagger }_{x_{0}}=\Delta _{z_{0}}$ and $\xi ^{\dagger }$ is pointed.

      • The map $\xi ^{\dagger }_{x}$ indeed lies in $\boldsymbol {\mathsf{Sets}}_{*}\webleft (Y,Z\webright )$, as we have

        \begin{align*} \xi ^{\dagger }_{x}\webleft (y_{0}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi \webleft (x,y_{0}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}z_{0}.\end{align*}
    • Conversely, a map

      in $\operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X,\boldsymbol {\mathsf{Sets}}_{*}\webleft (Y,Z\webright )\webright )$ gets sent to the map

      \[ \xi ^{\dagger }\colon X\times Y\to Z \]

      defined by

      \[ \xi ^{\dagger }\webleft (x,y\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi _{x}\webleft (y\webright ) \]

      for each $\webleft (x,y\webright )\in X\times Y$, which indeed lies in $\operatorname {\mathrm{Hom}}^{\otimes }_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright )$, as:

      • Left Bilinearity. We have

        \begin{align*} \xi ^{\dagger }\webleft (x_{0},y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi _{x_{0}}\webleft (y\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Delta _{z_{0}}\webleft (y\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}z_{0}\end{align*}

        for each $y\in Y$, since $\xi _{x_{0}}=\Delta _{z_{0}}$ as $\xi $ is assumed to be a pointed map.

      • Right Bilinearity. We have

        \begin{align*} \xi ^{\dagger }\webleft (x,y_{0}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi _{x}\webleft (y_{0}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}z_{0}\end{align*}

        for each $x\in X$, since $\xi _{x}\in \boldsymbol {\mathsf{Sets}}_{*}\webleft (Y,Z\webright )$ is a morphism of pointed sets.

    This finishes the proof.

    Item 3: Enriched Adjointness
    This follows from Item 2 and Unresolved reference, Unresolved reference of Unresolved reference.

    Item 4: As a Pushout
    Following the description of Chapter 4: Constructions With Sets, Remark 4.2.4.1.3, we have

    \[ \mathrm{pt}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{X\vee Y}\webleft (X\times Y\webright )\cong \webleft (\mathrm{pt}\times \webleft (X\times Y\webright )\webright )/\mathord {\sim }, \]

    where $\mathord {\sim }$ identifies the elemenet $\star $ in $\mathrm{pt}$ with all elements of the form $\webleft (x_{0},y\webright )$ and $\webleft (x,y_{0}\webright )$ in $X\times Y$. Thus Chapter 10: Conditions on Relations, Item 4 of Proposition 10.6.2.1.3 coupled with Remark 7.5.1.1.8 then gives us a well-defined map

    \[ \mathrm{pt}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{X\vee Y}\webleft (X\times Y\webright )\to X\wedge Y \]

    via $\webleft [\webleft (\star ,\webleft (x,y\webright )\webright )\webright ]\mapsto x\wedge y$, with inverse

    \[ X\wedge Y\to \mathrm{pt}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}_{X\vee Y}\webleft (X\times Y\webright ) \]

    given by $x\wedge y\mapsto \webleft [\webleft (\star ,\webleft (x,y\webright )\webright )\webright ]$.

    Item 5: Distributivity Over Wedge Sums
    This follows from Proposition 7.5.9.1.1, Unresolved reference, Unresolved reference of Unresolved reference, and the fact that $\vee $ is the coproduct in $\mathsf{Sets}_{*}$ (Chapter 6: Pointed Sets, Definition 6.3.3.1.1).


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: