Item 2$\implies $Item 3: The equalities in Item 2 imply $R\dashv R^{-1}$, and thus by Proposition 8.4.3.1.1, there exists a function $f_{R}\colon A\to B$ associated to $R$, where, for each $a\in A$, the image $f_{R}\webleft (a\webright )$ of $a$ by $f_{R}$ is the unique element of $R\webleft (a\webright )$, which implies $R=\operatorname {\mathrm{Gr}}\webleft (f_{R}\webright )$ in particular. Furthermore, we have $R^{-1}=f^{-1}_{R}$ (as in Chapter 9: Constructions With Relations,
). The conditions from Item 2 then become the following:
\begin{align*} f^{-1}_{R}\mathbin {\diamond }f_{R} = \chi _{A},\\ f_{R}\mathbin {\diamond }f^{-1}_{R} = \chi _{B}. \end{align*}
All that is left is to show then is that $f_{R}$ is a bijection:
-
•
The Function $f_{R}$ Is Injective. Let $a,b\in A$ and suppose that $f_{R}\webleft (a\webright )=f_{R}\webleft (b\webright )$. Since $a\sim _{R}f_{R}\webleft (a\webright )$ and $f_{R}\webleft (a\webright )=f_{R}\webleft (b\webright )\sim _{R^{-1}}b$, the condition $f^{-1}_{R}\mathbin {\diamond }f_{R}=\chi _{A}$ implies that $a=b$, showing $f_{R}$ to be injective.
-
•
The Function $f_{R}$ Is Surjective. Let $b\in B$. Applying the condition $f_{R}\mathbin {\diamond }f^{-1}_{R}=\chi _{B}$ to $\webleft (b,b\webright )$, it follows that there exists some $a\in A$ such that $f^{-1}_{R}\webleft (b\webright )=a$ and $f_{R}\webleft (a\webright )=b$. This shows $f_{R}$ to be surjective.