The following conditions are equivalent:
-
1.
The relation $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ is an equivalence in $\boldsymbol {\mathsf{Rel}}$, i.e.:
- (★) There exists a relation $R^{-1}\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A$ from $B$ to $A$ together with isomorphisms
\begin{align*} R^{-1}\mathbin {\diamond }R & \cong \chi _{A},\\ R\mathbin {\diamond }R^{-1} & \cong \chi _{B}. \end{align*} -
2.
The relation $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ is an isomorphism in $\mathrm{Rel}$, i.e.:
- (★) There exists a relation $R^{-1}\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A$ from $B$ to $A$ such that we have
\begin{align*} R^{-1}\mathbin {\diamond }R & = \chi _{A},\\ R\mathbin {\diamond }R^{-1} & = \chi _{B}. \end{align*}