Let $(X,\preceq _{X})$ be a poset.
Let $(X,\preceq _{X})$ be a poset.
The posetal category associated to $(X,\preceq _{X})$ is the category $X_{\mathsf{pos}}$ where
Objects. We have
Morphisms. For each $a,b\in \operatorname {\mathrm{Obj}}(X_{\mathsf{pos}})$, we have
Identities. For each $a\in \operatorname {\mathrm{Obj}}(X_{\mathsf{pos}})$, the unit map
of $X_{\mathsf{pos}}$ at $a$ is given by the identity map.
Composition. For each $a,b,c\in \operatorname {\mathrm{Obj}}(X_{\mathsf{pos}})$, the composition map
of $X_{\mathsf{pos}}$ at $(a,b,c)$ is defined as either the inclusion $\text{Ø}\hookrightarrow \mathrm{pt}$ or the identity map of $\mathrm{pt}$, depending on whether we have $a\preceq _{X}b$, $b\preceq _{X}c$, and $a\preceq _{X}c$.
A category $\mathcal{C}$ is posetal1 if $\mathcal{C}$ is equivalent to $X_{\mathsf{pos}}$ for some poset $(X,\preceq _{X})$.
Let $(X,\preceq _{X})$ be a poset and let $\mathcal{C}$ be a category.
Functoriality. The assignment $(X,\preceq _{X})\mapsto X_{\mathsf{pos}}$ defines a functor
where:
Action on Objects. For each $X\in \operatorname {\mathrm{Obj}}(\mathsf{Pos})$, we have
where $X_{pos}$ is the category of of Item 1 of Definition 11.2.7.1.1.
Action on Morphisms. Given a morphism of posets $f\colon X\to Y$ in $\mathsf{Pos}$, the image
of $f$ by $(-)_{\mathsf{pos}}$ is the functor defined as follows:
The Action of $f_{\mathsf{pos}}$ on Objects. For each $x\in \operatorname {\mathrm{Obj}}(X_{\mathsf{pos}})$, we have
The Action of $f_{\mathsf{pos}}$ on Morphisms. For each $x,y\in \operatorname {\mathrm{Obj}}(X_{\mathsf{pos}})$, the action
of $f$ at $(x,y)$ is given by
if $x\preceq _{X}y$ or, otherwise, by the inclusion of the empty set into $\operatorname {\mathrm{Hom}}_{Y_{\mathsf{pos}}}(f(x),f(y))$.
Fully Faithfulness. The functor $(-)_{\mathsf{pos}}$ of Item 1 is fully faithful.
Characterisations. The following conditions are equivalent:
Automatic Commutativity of Diagrams. Every diagram in a posetal category commutes.
Next, we claim that $(-)_{\mathsf{pos}}$ is indeed a functor:
Preservation of Identities. Let $X\in \operatorname {\mathrm{Obj}}(\mathsf{Pos})$. Given $x,y\in X$ with $x\preceq _{X}y$, we have
so $(\operatorname {\mathrm{id}}_{X})_{\mathsf{pos}}$ acts like the identity functor of $X_{\mathsf{pos}}$ on objects, and
so the same holds for morphisms. Thus $(\operatorname {\mathrm{id}}_{X})_{\mathsf{pos}}=\operatorname {\mathrm{id}}_{X_{\mathsf{pos}}}$.
Preservation of Composition. Let $X,Y,Z\in \operatorname {\mathrm{Obj}}(\mathsf{Pos})$. Given morphisms of posets $f\colon X\to Y$ and $g\colon Y\to Z$, we need to show
Indeed, given $x\in X$, we have
so the identity holds on objects. Since $Z_{\mathsf{pos}}$ is a posetal category, the identity automatically holds on morphisms since
for each $x,y\in X$ with $x\preceq _{X}y$.
Thus $(-)_{\mathsf{pos}}$ is indeed a functor.