Let $\webleft (X,\preceq _{X}\webright )$ be a poset.
Let $\webleft (X,\preceq _{X}\webright )$ be a poset.
The posetal category associated to $\webleft (X,\preceq _{X}\webright )$ is the category $X_{\mathsf{pos}}$ where
Objects. We have
Morphisms. For each $a,b\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{pos}}\webright )$, we have
Identities. For each $a\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{pos}}\webright )$, the unit map
of $X_{\mathsf{pos}}$ at $a$ is given by the identity map.
Composition. For each $a,b,c\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{pos}}\webright )$, the composition map
of $X_{\mathsf{pos}}$ at $\webleft (a,b,c\webright )$ is defined as either the inclusion $\text{Ø}\hookrightarrow \mathrm{pt}$ or the identity map of $\mathrm{pt}$, depending on whether we have $a\preceq _{X}b$, $b\preceq _{X}c$, and $a\preceq _{X}c$.
A category $\mathcal{C}$ is posetal1 if $\mathcal{C}$ is equivalent to $X_{\mathsf{pos}}$ for some poset $\webleft (X,\preceq _{X}\webright )$.
Let $\webleft (X,\preceq _{X}\webright )$ be a poset and let $\mathcal{C}$ be a category.
Functoriality. The assignment $\webleft (X,\preceq _{X}\webright )\mapsto X_{\mathsf{pos}}$ defines a functor
Fully Faithfulness. The functor $\webleft (-\webright )_{\mathsf{pos}}$ of Item 1 is fully faithful.
Characterisations. The following conditions are equivalent:
Automatic Commutativity of Diagrams. Every diagram in a posetal category commutes.