Let $(X,\preceq _{X})$ be a poset.
-
1.
The posetal category associated to $(X,\preceq _{X})$ is the category $X_{\mathsf{pos}}$ where
-
•
Objects. We have
\[ \operatorname {\mathrm{Obj}}(X_{\mathsf{pos}})\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X. \] -
•
Morphisms. For each $a,b\in \operatorname {\mathrm{Obj}}(X_{\mathsf{pos}})$, we have
\[ \operatorname {\mathrm{Hom}}_{X_{\mathsf{pos}}}(a,b)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathrm{pt}& \text{if $a\preceq _{X}b$},\\ \text{Ø}& \text{otherwise.}\end{cases} \] -
•
Identities. For each $a\in \operatorname {\mathrm{Obj}}(X_{\mathsf{pos}})$, the unit map
\[ \mathbb {1}^{X_{\mathsf{pos}}}_{a}\colon \mathrm{pt}\to \operatorname {\mathrm{Hom}}_{X_{\mathsf{pos}}}(a,a) \]of $X_{\mathsf{pos}}$ at $a$ is given by the identity map.
-
•
Composition. For each $a,b,c\in \operatorname {\mathrm{Obj}}(X_{\mathsf{pos}})$, the composition map
\[ \circ ^{X_{\mathsf{pos}}}_{a,b,c}\colon \operatorname {\mathrm{Hom}}_{X_{\mathsf{pos}}}(b,c)\times \operatorname {\mathrm{Hom}}_{X_{\mathsf{pos}}}(a,b)\to \operatorname {\mathrm{Hom}}_{X_{\mathsf{pos}}}(a,c) \]of $X_{\mathsf{pos}}$ at $(a,b,c)$ is defined as either the inclusion $\text{Ø}\hookrightarrow \mathrm{pt}$ or the identity map of $\mathrm{pt}$, depending on whether we have $a\preceq _{X}b$, $b\preceq _{X}c$, and $a\preceq _{X}c$.
-
•
-
2.
A category $\mathcal{C}$ is posetal1 if $\mathcal{C}$ is equivalent to $X_{\mathsf{pos}}$ for some poset $(X,\preceq _{X})$.
- 1Further Terminology: Also called a thin category or a $(0,1)$-category.