11.2.7 Posetal Categories

    Let $\webleft (X,\preceq _{X}\webright )$ be a poset.

    1. 1.

      The posetal category associated to $\webleft (X,\preceq _{X}\webright )$ is the category $X_{\mathsf{pos}}$ where

      • Objects. We have

        \[ \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{pos}}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X. \]
      • Morphisms. For each $a,b\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{pos}}\webright )$, we have

        \[ \operatorname {\mathrm{Hom}}_{X_{\mathsf{pos}}}\webleft (a,b\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathrm{pt}& \text{if $a\preceq _{X}b$},\\ \text{Ø}& \text{otherwise.}\end{cases} \]
      • Identities. For each $a\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{pos}}\webright )$, the unit map

        \[ \mathbb {1}^{X_{\mathsf{pos}}}_{a}\colon \mathrm{pt}\to \operatorname {\mathrm{Hom}}_{X_{\mathsf{pos}}}\webleft (a,a\webright ) \]

        of $X_{\mathsf{pos}}$ at $a$ is given by the identity map.

      • Composition. For each $a,b,c\in \operatorname {\mathrm{Obj}}\webleft (X_{\mathsf{pos}}\webright )$, the composition map

        \[ \circ ^{X_{\mathsf{pos}}}_{a,b,c}\colon \operatorname {\mathrm{Hom}}_{X_{\mathsf{pos}}}\webleft (b,c\webright )\times \operatorname {\mathrm{Hom}}_{X_{\mathsf{pos}}}\webleft (a,b\webright )\to \operatorname {\mathrm{Hom}}_{X_{\mathsf{pos}}}\webleft (a,c\webright ) \]

        of $X_{\mathsf{pos}}$ at $\webleft (a,b,c\webright )$ is defined as either the inclusion $\text{Ø}\hookrightarrow \mathrm{pt}$ or the identity map of $\mathrm{pt}$, depending on whether we have $a\preceq _{X}b$, $b\preceq _{X}c$, and $a\preceq _{X}c$.

    2. 2.

      A category $\mathcal{C}$ is posetal1 if $\mathcal{C}$ is equivalent to $X_{\mathsf{pos}}$ for some poset $\webleft (X,\preceq _{X}\webright )$.


    1. 1Further Terminology: Also called a thin category or a $\webleft (0,1\webright )$-category.

    Let $\webleft (X,\preceq _{X}\webright )$ be a poset and let $\mathcal{C}$ be a category.

    1. 1.

      Functoriality. The assignment $\webleft (X,\preceq _{X}\webright )\mapsto X_{\mathsf{pos}}$ defines a functor

      \[ \webleft (-\webright )_{\mathsf{pos}}\colon \mathsf{Pos}\to \mathsf{Cats}. \]
    2. 2.

      Fully Faithfulness. The functor $\webleft (-\webright )_{\mathsf{pos}}$ of Item 1 is fully faithful.

    3. 3.

      Characterisations. The following conditions are equivalent:

      1. (a)

        The category $\mathcal{C}$ is posetal.

  • (b)

    For each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$ and each $f,g\in \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright )$, we have $f=g$.

  • 4.

    Automatic Commutativity of Diagrams. Every diagram in a posetal category commutes.

  • Item 1: Functoriality
    Omitted.

    Item 2: Fully Faithfulness
    Omitted.

    Item 3: Characterisations
    Clear.

    Item 4: Automatic Commutativity of Diagrams
    This follows from the fact that if $\mathcal{C}$ is posetal, then there’s at most one morphism between any two objects.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: