A $1$-morphism $f\colon A\to B$ of $\mathcal{C}$ is representably fully faithful1 if the following equivalent conditions are satisfied:
-
1.
The $1$-morphism $f$ is representably faithful (Definition 13.1.1.1.1) and representably full (Definition 13.1.2.1.1).
-
2.
For each $X\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the functor
\[ f_{*}\colon \mathsf{Hom}_{\mathcal{C}}\webleft (X,A\webright )\to \mathsf{Hom}_{\mathcal{C}}\webleft (X,B\webright ) \]given by postcomposition by $f$ is fully faithful.
- 1Further Terminology: Also called simply a fully faithful morphism, based on Item 1 of Example 13.1.3.1.3.