13.1.9 Strict Monomorphisms

    Let $\mathcal{C}$ be a bicategory.

    A $1$-morphism $f\colon A\to B$ of $\mathcal{C}$ is a strict monomorphism if, for each $X\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the functor

    \[ f_{*}\colon \mathsf{Hom}_{\mathcal{C}}\webleft (X,A\webright )\to \mathsf{Hom}_{\mathcal{C}}\webleft (X,B\webright ) \]

    given by postcomposition by $f$ is injective on objects, i.e. its action on objects

    \[ f_{*}\colon \operatorname {\mathrm{Obj}}\webleft (\mathsf{Hom}_{\mathcal{C}}\webleft (X,A\webright )\webright )\to \operatorname {\mathrm{Obj}}\webleft (\mathsf{Hom}_{\mathcal{C}}\webleft (X,B\webright )\webright ) \]

    is injective.

    In detail, $f$ is a strict monomorphism in $\mathcal{C}$ if, for each diagram in $\mathcal{C}$ of the form

    if $f\circ \phi =f\circ \psi $, then $\phi =\psi $.

    Here are some examples of strict monomorphisms.

    1. 1.

      Strict Monomorphisms in $\mathsf{Cats}_{\mathsf{2}}$. The strict monomorphisms in $\mathsf{Cats}_{\mathsf{2}}$ are precisely the functors which are injective on objects and injective on morphisms; see Chapter 11: Categories, Item 1 of Proposition 11.7.2.1.2.

  • 2.

    Strict Monomorphisms in $\boldsymbol {\mathsf{Rel}}$. The strict monomorphisms in $\boldsymbol {\mathsf{Rel}}$ are characterised in Chapter 8: Relations, Proposition 8.4.7.1.1.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: