4.3.6 Unions of Families of Subsets

    Let $X$ be a set and let $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$.

    The union of $\mathcal{U}$ is the set $\bigcup _{U\in \mathcal{U}}U$ defined by

    \[ \bigcup _{U\in \mathcal{U}}U\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $U\in \mathcal{U}$}\\ & \text{such that we have $x\in U$}\end{aligned} \right\} . \]

    Let $X$ be a set.

    1. 1.

      Functoriality. The assignment $\mathcal{U}\mapsto \bigcup _{U\in \mathcal{U}}U$ defines a functor

      \[ \bigcup \colon (\mathcal{P}(\mathcal{P}(X)),\subset )\to (\mathcal{P}(X),\subset ). \]

      In particular, for each $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$, the following condition is satisfied:

      • (★)
      • If $\mathcal{U}\subset \mathcal{V}$, then $\displaystyle \bigcup _{U\in \mathcal{U}}U\subset \bigcup _{V\in \mathcal{V}}V$.
    2. 2.

      Associativity. The diagram

      commutes, i.e. we have

      \[ \bigcup _{U\in {\scriptsize \displaystyle \bigcup _{A\in \mathcal{A}}A}}U=\bigcup _{A\in \mathcal{A}}(\bigcup _{U\in A}U) \]

      for each $\mathcal{A}\in \mathcal{P}(\mathcal{P}(\mathcal{P}(X)))$.

    3. 3.

      Left Unitality. The diagram

      commutes, i.e. we have

      \[ \bigcup _{V\in \left\{ U\right\} }V=U \]

      for each $U\in \mathcal{P}(X)$.

    4. 4.

      Right Unitality. The diagram

      commutes, i.e. we have

      \[ \bigcup _{\left\{ u\right\} \in \chi _{X}(U)}\left\{ u\right\} =U \]

      for each $U\in \mathcal{P}(X)$.

    5. 5.

      Interaction With Unions I. The diagram

      commutes, i.e. we have

      \[ \bigcup _{W\in \mathcal{U}\cup \mathcal{V}}W=\left(\bigcup _{U\in \mathcal{U}}U\right)\cup \left(\bigcup _{V\in \mathcal{V}}V\right) \]

      for each $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$.

    6. 6.

      Interaction With Unions II. The diagrams

      commute, i.e. we have

      \begin{align*} U\cup \left(\bigcup _{V\in \mathcal{V}}V\right) & = \bigcup _{V\in \mathcal{V}}(U\cup V),\\ \left(\bigcup _{U\in \mathcal{U}}U\right)\cup V & = \bigcup _{U\in \mathcal{U}}(U\cup V)\end{align*}

      for each nonempty $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$ and each $U,V\in \mathcal{P}(X)$.

    7. 7.

      Interaction With Intersections I. We have a natural transformation

      with components

      \[ \bigcup _{W\in \mathcal{U}\cap \mathcal{V}}W\subset \left(\bigcup _{U\in \mathcal{U}}U\right)\cap \left(\bigcup _{V\in \mathcal{V}}V\right) \]

      for each $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$.

    8. 8.

      Interaction With Intersections II. The diagrams

      commute, i.e. we have

      \begin{align*} U\cap \left(\bigcup _{V\in \mathcal{V}}V\right) & = \bigcup _{V\in \mathcal{V}}(U\cap V),\\ \left(\bigcup _{U\in \mathcal{U}}U\right)\cap V & = \bigcup _{U\in \mathcal{U}}(U\cap V)\end{align*}

      for each $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$ and each $U,V\in \mathcal{P}(X)$.

    9. 9.

      Interaction With Differences. The diagram

      does not commute in general, i.e. we may have

      \[ \bigcup _{W\in \mathcal{U}\setminus \mathcal{V}}W\neq \left(\bigcup _{U\in \mathcal{U}}U\right)\setminus \left(\bigcup _{V\in \mathcal{V}}V\right) \]

      in general, where $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$.

    10. 10.

      Interaction With Complements I. The diagram

      does not commute in general, i.e. we may have

      \[ \bigcup _{U\in \mathcal{U}^{\textsf{c}}}U\neq \bigcup _{U\in \mathcal{U}}U^{\textsf{c}} \]

      in general, where $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$.

    11. 11.

      Interaction With Complements II. The diagram

      commutes, i.e. we have

      \[ \left(\bigcup _{U\in \mathcal{U}}U\right)^{\textsf{c}}=\bigcap _{U\in \mathcal{U}}U^{\textsf{c}} \]

      for each $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$.

    12. 12.

      Interaction With Complements III. The diagram

      commutes, i.e. we have

      \[ \left(\bigcap _{U\in \mathcal{U}}U\right)^{\textsf{c}}=\bigcup _{U\in \mathcal{U}}U^{\textsf{c}} \]

      for each $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$.

    13. 13.

      Interaction With Symmetric Differences. The diagram

      does not commute in general, i.e. we may have

      \[ \bigcup _{W\in \mathcal{U}\mathbin {\triangle }\mathcal{V}}W\neq \left(\bigcup _{U\in \mathcal{U}}U\right)\mathbin {\triangle }\left(\bigcup _{V\in \mathcal{V}}V\right) \]

      in general, where $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$.

    14. 14.

      Interaction With Internal Homs I. The diagram

      does not commute in general, i.e. we may have

      \[ \bigcup _{W\in [\mathcal{U},\mathcal{V}]_{\mathcal{P}(X)}}W\neq \left[\bigcup _{U\in \mathcal{U}}U,\bigcup _{V\in \mathcal{V}}V\right]_{X} \]

      in general, where $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$.

  • 15.

    Interaction With Internal Homs II. The diagram

    commutes, i.e. we have

    \[ \left[\bigcup _{U\in \mathcal{U}}U,V\right]_{X}= \bigcap _{U\in \mathcal{U}}[U,V]_{X} \]

    for each $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$ and each $V\in \mathcal{P}(X)$.

  • 16.

    Interaction With Internal Homs III. The diagram

    commutes, i.e. we have

    \[ \left[U,\bigcup _{V\in \mathcal{V}}V\right]_{X}= \bigcup _{V\in \mathcal{V}}[U,V]_{X} \]

    for each $U\in \mathcal{P}(X)$ and each $\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$.

  • 17.

    Interaction With Direct Images. Let $f\colon X\to Y$ be a map of sets. The diagram

    commutes, i.e. we have

    \[ \bigcup _{U\in \mathcal{U}}f_{!}(U)=\bigcup _{V\in f_{!}(\mathcal{U})}V \]

    for each $\mathcal{U}\in \mathcal{P}(X)$, where $f_{!}(\mathcal{U})\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(f_{!})_{!}(\mathcal{U})$.

  • 18.

    Interaction With Inverse Images. Let $f\colon X\to Y$ be a map of sets. The diagram

    commutes, i.e. we have

    \[ \bigcup _{V\in \mathcal{V}}f^{-1}(V)=\bigcup _{U\in f^{-1}(\mathcal{U})}U \]

    for each $\mathcal{V}\in \mathcal{P}(Y)$, where $f^{-1}(\mathcal{V})\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(f^{-1})^{-1}(\mathcal{V})$.

  • 19.

    Interaction With Codirect Images. Let $f\colon X\to Y$ be a map of sets. The diagram

    commutes, i.e. we have

    \[ \bigcup _{U\in \mathcal{U}}f_{*}(U)=\bigcup _{V\in f_{*}(\mathcal{U})}V \]

    for each $\mathcal{U}\in \mathcal{P}(X)$, where $f_{*}(\mathcal{U})\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(f_{*})_{*}(\mathcal{U})$.

  • 20.

    Interaction With Intersections of Families I. The diagram

    commutes, i.e. we have

    \[ \bigcap _{U\in {\scriptsize \displaystyle \bigcup _{A\in \mathcal{A}}A}}U=\bigcap _{A\in \mathcal{A}}\left(\bigcap _{U\in A}U\right) \]

    for each $\mathcal{A}\in \mathcal{P}(\mathcal{P}(X))$.

  • 21.

    Interaction With Intersections of Families II. Let $X$ be a set and consider the compositions

    given by

    \[ \begin{aligned} \mathcal{A} & \mapsto \bigcup _{U\in {\scriptsize \displaystyle \bigcap _{A\in \mathcal{A}}}A}U,\\ \mathcal{A} & \mapsto \bigcup _{A\in \mathcal{A}}\left(\bigcap _{U\in A}U\right), \end{aligned} \quad \begin{aligned} \mathcal{A} & \mapsto \bigcap _{U\in {\scriptsize \displaystyle \bigcup _{A\in \mathcal{A}}A}}U,\\ \mathcal{A} & \mapsto \bigcap _{A\in \mathcal{A}}\left(\bigcup _{U\in A}U\right) \end{aligned} \]

    for each $\mathcal{A}\in \mathcal{P}(\mathcal{P}(\mathcal{P}(X)))$. We have the following inclusions:

    All other possible inclusions fail to hold in general.

  • Item 1: Functoriality
    Since $\mathcal{P}(X)$ is posetal, it suffices to prove the condition $(\star )$. So let $\mathcal{U},\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$ with $\mathcal{U}\subset \mathcal{V}$. We claim that

    \[ \bigcup _{U\in \mathcal{U}}U\subset \bigcup _{V\in \mathcal{V}}V. \]

    Indeed, given $x\in \bigcup _{U\in \mathcal{U}}U$, there exists some $U\in \mathcal{U}$ such that $x\in U$, but since $\mathcal{U}\subset \mathcal{V}$, we have $U\in \mathcal{V}$ as well, and thus $x\in \bigcup _{V\in \mathcal{V}}V$, which gives our desired inclusion.

    Item 2: Associativity
    We have

    \begin{align*} \bigcup _{U\in {\scriptsize \displaystyle \bigcup _{A\in \mathcal{A}}A}}U & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $U\in \displaystyle \bigcup _{A\in \mathcal{A}}A$}\\ & \text{such that we have $x\in U$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $A\in \mathcal{A}$}\\ & \text{and some $U\in A$ such that}\\ & \text{we have $x\in U$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $A\in \mathcal{A}$}\\ & \text{such that we have $x\in \bigcup _{U\in A}U$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{A\in \mathcal{A}}\left(\bigcup _{U\in A}U\right). \end{align*}

    This finishes the proof.

    Item 3: Left Unitality
    We have

    \begin{align*} \bigcup _{V\in \left\{ U\right\} }V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $V\in \left\{ U\right\} $}\\ & \text{such that we have $x\in U$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ x\in U \right\} \\ & = U.\end{align*}

    This finishes the proof.

    Item 4: Right Unitality
    We have

    \begin{align*} \bigcup _{\left\{ u\right\} \in \chi _{X}(U)}\left\{ u\right\} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $\left\{ u\right\} \in \chi _{X}(U)$}\\ & \text{such that we have $x\in \left\{ u\right\} $} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $\left\{ u\right\} \in \chi _{X}(U)$}\\ & \text{such that we have $x=u$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $u\in U$}\\ & \text{such that we have $x=u$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ x\in U\right\} \\ & = U.\end{align*}

    This finishes the proof.

    Item 5: Interaction With Unions I
    We have

    \begin{align*} \bigcup _{W\in \mathcal{U}\cup \mathcal{V}}W & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $W\in \mathcal{U}\cup \mathcal{V}$}\\ & \text{such that we have $x\in W$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $W\in \mathcal{U}$ or some}\\ & \text{$W\in \mathcal{V}$ such that we have $x\in W$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $W\in \mathcal{U}$}\\ & \text{such that we have $x\in W$} \end{aligned} \right\} \\ & \phantom{={}}\mkern 4mu\cup \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $W\in \mathcal{V}$}\\ & \text{such that we have $x\in W$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left(\bigcup _{W\in \mathcal{U}}W\right)\cup \left(\bigcup _{W\in \mathcal{V}}W\right)\\ & = \left(\bigcup _{U\in \mathcal{U}}U\right)\cup \left(\bigcup _{V\in \mathcal{V}}V\right). \end{align*}

    This finishes the proof.

    Item 6: Interaction With Unions II
    Assume $\mathcal V$ is nonempty. We have

    \begin{align*} U \cup \bigcup _{V\in \mathcal{V}}V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{$x \in U$ or $x \in \bigcup _{V\in \mathcal{V}}V$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{$x \in U$ or there exists some}\\ & \text{$V\in \mathcal{V}$ such that $x\in V$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $V\in \mathcal{V}$}\\ & \text{such that $x \in U$ or $x\in V$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $V\in \mathcal{V}$}\\ & \text{such that $x \in U \cup V$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{V\in \mathcal{V}} U \cup V. \end{align*}

    This concludes the proof of the first statement. For the second statement, use Item 4 of Proposition 4.3.8.1.2 to rewrite

    \begin{align*} \left(\bigcup _{U\in \mathcal{U}}U\right)\cup V & = V \cup \left(\bigcup _{U\in \mathcal{U}}U\right),\\ \bigcup _{U\in \mathcal{U}}(U\cup V) & = \bigcup _{U\in \mathcal{U}}(V\cup U). \end{align*}

    But these two sets are equal by the first statement.

    Item 7: Interaction With Intersections I
    We have

    \begin{align*} \bigcup _{W\in \mathcal{U}\cap \mathcal{V}}W & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $W\in \mathcal{U}\cap \mathcal{V}$}\\ & \text{such that we have $x\in W$} \end{aligned} \right\} \\ & \subset \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $U\in \mathcal{U}$ and some $V\in \mathcal{V}$}\\ & \text{such that we have $x\in U$ and $x\in V$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $U\in \mathcal{U}$}\\ & \text{such that we have $x\in U$} \end{aligned} \right\} \\ & \phantom{={}}\mkern 4mu\cup \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $V\in \mathcal{V}$}\\ & \text{such that we have $x\in V$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left(\bigcup _{U\in \mathcal{U}}U\right)\cap \left(\bigcup _{V\in \mathcal{V}}V\right).\end{align*}

    This finishes the proof.

    Item 8: Interaction With Intersections II
    We have

    \begin{align*} U \cap \bigcup _{V\in \mathcal{V}}V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{$x \in U$ and $x \in \bigcup _{V\in \mathcal{V}}V$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{$x \in U$ and there exists some}\\ & \text{$V\in \mathcal{V}$ such that $x\in V$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $V\in \mathcal{V}$}\\ & \text{such that $x \in U$ and $x\in V$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $V\in \mathcal{V}$}\\ & \text{such that $x \in U \cap V$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{V\in \mathcal{V}} U \cap V. \end{align*}

    This concludes the proof of the first statement. For the second statement, use Item 5 of Proposition 4.3.9.1.2 to rewrite

    \begin{align*} \left(\bigcup _{U\in \mathcal{U}}U\right)\cap V & = V \cap \left(\bigcup _{U\in \mathcal{U}}U\right),\\ \bigcup _{U\in \mathcal{U}}(U\cap V) & = \bigcup _{U\in \mathcal{U}}(V\cap U). \end{align*}

    But these two sets are equal by the first statement.

    Item 9: Interaction With Differences
    Let $X=\left\{ 0,1\right\} $, let $\mathcal{U}=\left\{ \left\{ 0,1\right\} \right\} $, and let $\mathcal{V}=\left\{ \left\{ 0\right\} \right\} $. We have

    \begin{align*} \bigcup _{W\in \mathcal{U}\setminus \mathcal{V}}U & = \bigcup _{W\in \left\{ \left\{ 0,1\right\} \right\} }W\\ & = \left\{ 0,1\right\} , \end{align*}

    whereas

    \begin{align*} \left(\bigcup _{U\in \mathcal{U}}U\right)\setminus \left(\bigcup _{V\in \mathcal{V}}V\right) & = \left\{ 0,1\right\} \setminus \left\{ 0\right\} \\ & = \left\{ 1\right\} . \end{align*}

    Thus we have

    \[ \bigcup _{W\in \mathcal{U}\setminus \mathcal{V}}W=\left\{ 0,1\right\} \neq \left\{ 1\right\} =\left(\bigcup _{U\in \mathcal{U}}U\right)\setminus \left(\bigcup _{V\in \mathcal{V}}V\right). \]

    This finishes the proof.

    Item 10: Interaction With Complements I
    Let $X=\left\{ 0,1\right\} $ and let $\mathcal{U}=\left\{ 0\right\} $. We have

    \begin{align*} \bigcup _{U\in \mathcal{U}^{\textsf{c}}}U & = \bigcup _{U\in \left\{ \text{Ø},\left\{ 1\right\} ,\left\{ 0,1\right\} \right\} }U\\ & = \left\{ 0,1\right\} , \end{align*}

    whereas

    \begin{align*} \bigcup _{U\in \mathcal{U}}U^{\textsf{c}} & = \left\{ 0\right\} ^{\textsf{c}}\\ & = \left\{ 1\right\} . \end{align*}

    Thus we have

    \[ \bigcup _{U\in \mathcal{U}^{\textsf{c}}}U=\left\{ 0,1\right\} \neq \left\{ 1\right\} =\bigcup _{U\in \mathcal{U}}U^{\textsf{c}}. \]

    This finishes the proof.

    Item 11: Interaction With Complements II
    We have

    \begin{align*} \left( \bigcup _{U \in \mathcal U} U \right)^{\textsf{c}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists no $U\in \mathcal{U}$}\\ & \text{such that we have $x\in U$}\end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{for all $U\in \mathcal{U}$}\\ & \text{we have $x\not\in U$}\end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{for all $U\in \mathcal{U}$}\\ & \text{we have $x\in U^{\textsf{c}}$}\end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{U \in \mathcal U} U^{\textsf{c}}. \end{align*}

    Item 12: Interaction With Complements III
    By Item 11 Item 3 of Proposition 4.3.11.1.2, we have

    \begin{align*} \left( \bigcap _{U \in \mathcal U} U \right)^{\textsf{c}} & = \left( \bigcap _{U \in \mathcal U} (U^{\textsf{c}})^{\textsf{c}} \right)^{\textsf{c}}\\ & = \left(\left( \bigcup _{U \in \mathcal U} U^{\textsf{c}} \right)^{\textsf{c}}\right)^{\textsf{c}}\\ & = \bigcup _{U \in \mathcal U} U^{\textsf{c}}. \end{align*}

    Item 13: Interaction With Symmetric Differences
    Let $X=\left\{ 0,1\right\} $, let $\mathcal{U}=\left\{ \left\{ 0,1\right\} \right\} $, and let $\mathcal{V}=\left\{ \left\{ 0\right\} ,\left\{ 0,1\right\} \right\} $. We have

    \begin{align*} \bigcup _{W\in \mathcal{U}\mathbin {\triangle }\mathcal{V}}W & = \bigcup _{W\in \left\{ \left\{ 0\right\} \right\} }W\\ & = \left\{ 0\right\} , \end{align*}

    whereas

    \begin{align*} \left(\bigcup _{U\in \mathcal{U}}U\right)\mathbin {\triangle }\left(\bigcup _{V\in \mathcal{V}}V\right) & = \left\{ 0,1\right\} \mathbin {\triangle }\left\{ 0,1\right\} \\ & = \text{Ø}, \end{align*}

    Thus we have

    \[ \bigcup _{W\in \mathcal{U}\mathbin {\triangle }\mathcal{V}}W=\left\{ 0\right\} \neq \text{Ø}=\left(\bigcup _{U\in \mathcal{U}}U\right)\mathbin {\triangle }\left(\bigcup _{V\in \mathcal{V}}V\right). \]

    This finishes the proof.

    Item 14: Interaction With Internal Homs I
    This is a repetition of Item 7 of Proposition 4.4.7.1.3 and is proved there.

    Item 15: Interaction With Internal Homs II
    This is a repetition of Item 8 of Proposition 4.4.7.1.3 and is proved there.

    Item 16: Interaction With Internal Homs III
    This is a repetition of Item 9 of Proposition 4.4.7.1.3 and is proved there.

    Item 17: Interaction With Direct Images
    This is a repetition of Item 3 of Proposition 4.6.1.1.5 and is proved there.

    Item 18: Interaction With Inverse Images
    This is a repetition of Item 3 of Proposition 4.6.2.1.3 and is proved there.

    Item 19: Interaction With Codirect Images
    This is a repetition of Item 3 of Proposition 4.6.3.1.7 and is proved there.

    Item 20: Interaction With Intersections of Families I
    We have

    \begin{align*} \bigcap _{U\in {\scriptsize \displaystyle \bigcup _{A\in \mathcal{A}}A}}U & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $U\in \bigcup _{A\in \mathcal{A}}A$,}\\ & \text{we have $x\in U$} \end{aligned} \right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $A\in \mathcal{A}$ and each}\\ & \text{$U\in A$, we have $x\in U$} \end{aligned} \right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{A\in \mathcal{A}}\left(\bigcap _{U\in A}U\right).\end{align*}

    This finishes the proof.

    Item 21: Interaction With Intersections of Families II
    Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: