The union of $\mathcal{U}$ is the set $\bigcup _{U\in \mathcal{U}}U$ defined by
Let $X$ be a set and let $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
The union of $\mathcal{U}$ is the set $\bigcup _{U\in \mathcal{U}}U$ defined by
Let $X$ be a set.
Functoriality. The assignment $\mathcal{U}\mapsto \bigcup _{U\in \mathcal{U}}U$ defines a functor
In particular, for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$, the following condition is satisfied:
Associativity. The diagram
for each $\mathcal{A}\in \mathcal{P}\webleft (\mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )\webright )$.
Left Unitality. The diagram
for each $U\in \mathcal{P}\webleft (X\webright )$.
Right Unitality. The diagram
for each $U\in \mathcal{P}\webleft (X\webright )$.
Interaction With Unions I. The diagram
for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Unions II. The diagrams
for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.
Interaction With Intersections I. We have a natural transformation
for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Intersections II. The diagrams
for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.
Interaction With Differences. The diagram
in general, where $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Complements I. The diagram
in general, where $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Complements II. The diagram
for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Complements III. The diagram
for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Symmetric Differences. The diagram
in general, where $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Internal Homs I. The diagram
in general, where $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Internal Homs II. The diagram
for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $V\in \mathcal{P}\webleft (X\webright )$.
Interaction With Internal Homs III. The diagram
for each $U\in \mathcal{P}\webleft (X\webright )$ and each $\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Direct Images. Let $f\colon X\to Y$ be a map of sets. The diagram
for each $\mathcal{U}\in \mathcal{P}\webleft (X\webright )$, where $f_{!}\webleft (\mathcal{U}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{!}\webright )_{!}\webleft (\mathcal{U}\webright )$.
Interaction With Inverse Images. Let $f\colon X\to Y$ be a map of sets. The diagram
for each $\mathcal{V}\in \mathcal{P}\webleft (Y\webright )$, where $f^{-1}\webleft (\mathcal{V}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f^{-1}\webright )^{-1}\webleft (\mathcal{V}\webright )$.
Interaction With Codirect Images. Let $f\colon X\to Y$ be a map of sets. The diagram
for each $\mathcal{U}\in \mathcal{P}\webleft (X\webright )$, where $f_{*}\webleft (\mathcal{U}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{*}\webright )_{*}\webleft (\mathcal{U}\webright )$.
Interaction With Intersections of Families I. The diagram
for each $\mathcal{A}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
Interaction With Intersections of Families II. Let $X$ be a set and consider the compositions
for each $\mathcal{A}\in \mathcal{P}\webleft (\mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )\webright )$. We have the following inclusions:
Indeed, given $x\in \bigcup _{U\in \mathcal{U}}U$, there exists some $U\in \mathcal{U}$ such that $x\in U$, but since $\mathcal{U}\subset \mathcal{V}$, we have $U\in \mathcal{V}$ as well, and thus $x\in \bigcup _{V\in \mathcal{V}}V$, which gives our desired inclusion.
This finishes the proof.
This finishes the proof.
This finishes the proof.
This finishes the proof.
This finishes the proof.
whereas
Thus we have
This finishes the proof.
whereas
Thus we have
This finishes the proof.
whereas
Thus we have
This finishes the proof.
This finishes the proof.