5.
By
, we then have $\mathord {\otimes _{\mathsf{Sets}}}\cong \mathord {\times }$.
Below, we’ll show that if a natural isomorphism $\mathord {\otimes _{\mathsf{Sets}}}\cong \mathord {\times }$ exists, then it must be unique. This will show that the isomorphism constructed above is equal to the isomorphism $\operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}|A,B}\colon A\otimes _{\mathsf{Sets}}B\to A\times B$ from before.
Constructing an Isomorphism $\operatorname {\mathrm{id}}^{\otimes }_{\mathbb {1}}\colon \mathbb {1}_{\mathsf{Sets}}\to \mathrm{pt}$
We define an isomorphism $\operatorname {\mathrm{id}}^{\otimes }_{\mathbb {1}}\colon \mathbb {1}_{\mathsf{Sets}}\to \mathrm{pt}$ as the composition
\[ \mathbb {1}_{\mathsf{Sets}}\overset {\rho ^{\mathsf{Sets},-1}_{\mathbb {1}_{\mathsf{Sets}}}}{\underset {\scriptstyle \mathord {\sim }}{\dashrightarrow }}\mathbb {1}_{\mathsf{Sets}}\times \mathrm{pt}\overset {\operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}|\mathbb {1}_{\mathsf{Sets}}}}{\underset {\scriptstyle \mathord {\sim }}{\dashrightarrow }}\mathbb {1}_{\mathsf{Sets}}\otimes _{\mathsf{Sets}}\mathrm{pt}\overset {\lambda '_{\mathrm{pt}}}{\underset {\scriptstyle \mathord {\sim }}{\dashrightarrow }}\mathrm{pt} \]
in $\mathsf{Sets}$.
Monoidal Left Unity of the Isomorphism $\mathord {\otimes _{\mathsf{Sets}}}\cong \mathord {\times }$
We have to show that the diagram
commutes. First, note that the diagram
corresponding to the case $A=\mathrm{pt}$, commutes by the terminality of $\mathrm{pt}$ (
Chapter 4: Constructions With Sets,
Construction 4.1.1.1.2). Since this diagram commutes, so does the diagram
Now, let $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, let $a\in A$, and consider the diagram
Since:
-
•
Subdiagram $(5)$ commutes by the naturality of $\lambda ^{\prime ,-1}$.
-
•
Subdiagram $(\dagger )$ commutes, as proved above.
-
•
Subdiagram $(4)$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}}$.
-
•
Subdiagram $(1)$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}}$.
-
•
Subdiagram $(3)$ commutes by the naturality of $\lambda ^{\mathsf{Sets},-1}$.
it follows that the diagram
Here’s a step-by-step showcase of this argument:
We then have
\begin{align*} \lambda ^{\prime ,-1}_{A}(a) & = [\lambda ^{\prime ,-1}_{A}\circ [a]](\star )\\ & = [(\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}}\times \operatorname {\mathrm{id}}_{A})\circ \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|\mathrm{pt},A}\circ \lambda ^{\mathsf{Sets},-1}_{A}\circ [a]](\star )\\ & = [(\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}}\times \operatorname {\mathrm{id}}_{A})\circ \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|\mathrm{pt},A}\circ \lambda ^{\mathsf{Sets},-1}_{A}](a) \end{align*}
for each $a\in A$, and thus we have
\[ \lambda ^{\prime ,-1}_{A}=(\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}}\times \operatorname {\mathrm{id}}_{A})\circ \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|\mathrm{pt},A}\circ \lambda ^{\mathsf{Sets},-1}_{A}. \]
Taking inverses then gives
\[ \lambda ^{\prime }_{A}=\lambda ^{\mathsf{Sets}}_{A}\circ \operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}|\mathrm{pt},A}\circ (\operatorname {\mathrm{id}}^{\otimes }_{\mathbb {1}|\mathsf{Sets}}\times \operatorname {\mathrm{id}}_{A}), \]
showing that the diagram
indeed commutes.
Monoidal Right Unity of the Isomorphism $\mathord {\otimes _{\mathsf{Sets}}}\cong \mathord {\times }$
We can use the same argument we used to prove the monoidal left unity of the isomorphism $\mathord {\otimes _{\mathsf{Sets}}}\cong \mathord {\times }$ above. For completeness, we repeat it below.
We have to show that the diagram
commutes. First, note that the diagram
corresponding to the case $A=\mathrm{pt}$, commutes by the terminality of $\mathrm{pt}$ (
Chapter 4: Constructions With Sets,
Construction 4.1.1.1.2). Since this diagram commutes, so does the diagram
Now, let $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, let $a\in A$, and consider the diagram
Since:
-
•
Subdiagram $(5)$ commutes by the naturality of $\rho ^{\prime ,-1}$.
-
•
Subdiagram $(\dagger )$ commutes, as proved above.
-
•
Subdiagram $(4)$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}}$.
-
•
Subdiagram $(1)$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}}$.
-
•
Subdiagram $(3)$ commutes by the naturality of $\rho ^{\mathsf{Sets},-1}$.
it follows that the diagram
Here’s a step-by-step showcase of this argument:
We then have
\begin{align*} \rho ^{\prime ,-1}_{A}(a) & = [\rho ^{\prime ,-1}_{A}\circ [a]](\star )\\ & = [(\operatorname {\mathrm{id}}_{A}\times \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}})\circ \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|\mathrm{pt},A}\circ \rho ^{\mathsf{Sets},-1}_{A}\circ [a]](\star )\\ & = [(\operatorname {\mathrm{id}}_{A}\times \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}})\circ \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|\mathrm{pt},A}\circ \rho ^{\mathsf{Sets},-1}_{A}](a) \end{align*}
for each $a\in A$, and thus we have
\[ \rho ^{\prime ,-1}_{A}=(\operatorname {\mathrm{id}}_{A}\times \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}})\circ \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|\mathrm{pt},A}\circ \rho ^{\mathsf{Sets},-1}_{A}. \]
Taking inverses then gives
\[ \rho ^{\prime }_{A}=\rho ^{\mathsf{Sets}}_{A}\circ \operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}|\mathrm{pt},A}\circ (\operatorname {\mathrm{id}}_{A}\times \operatorname {\mathrm{id}}^{\otimes }_{\mathbb {1}|\mathsf{Sets}}), \]
showing that the diagram
indeed commutes.
Monoidality of the Isomorphism $\mathord {\otimes _{\mathsf{Sets}}}\cong \mathord {\times }$
We have to show that the diagram
commutes. First, note that the diagram
commutes by the terminality of $\mathrm{pt}$ (
Chapter 4: Constructions With Sets,
Construction 4.1.1.1.2). Since the map $!_{\mathrm{pt}\times (\mathrm{pt}\times \mathrm{pt})}\colon \mathrm{pt}\times (\mathrm{pt}\times \mathrm{pt})\to \mathrm{pt}$ is an isomorphism (e.g. having inverse $\lambda ^{\mathsf{Sets},-1}_{\mathrm{pt}}\circ \lambda ^{\mathsf{Sets},-1}_{\mathrm{pt}}$), it follows that the diagram
also commutes. Taking inverses, we see that the diagram
commutes as well. Now, let $A,B,C\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, let $a\in A$, let $b\in B$, let $c\in C$, and consider the diagram
which we partition into subdiagrams as follows:
Since:
-
•
Subdiagram $(1)$ commutes by the naturality of $\alpha ^{\mathsf{Sets},-1}$.
-
•
Subdiagram $(2)$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}}$.
-
•
Subdiagram $(3)$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}}$.
-
•
Subdiagram $(\dagger )$ commutes, as proved above.
-
•
Subdiagram $(4)$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}}$.
-
•
Subdiagram $(5)$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}}$.
-
•
Subdiagram $(6)$ commutes by the naturality of $\alpha ^{\prime ,-1}$.
it follows that the diagram
also commutes. We then have
\begin{align*} \left[(\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|A,B}\otimes _{\mathsf{Sets}}\operatorname {\mathrm{id}}_{C})\circ \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|A\times B,C}\right.\\ \left.{}\circ \alpha ^{\mathsf{Sets},-1}_{A,B,C}\right](a,(b,c)) & = \left[(\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|A,B}\otimes _{\mathsf{Sets}}\operatorname {\mathrm{id}}_{C})\circ \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|A\times B,C}\right.\\ & \phantom{={}} \mkern 4mu\left.{}{}\circ \alpha ^{\mathsf{Sets},-1}_{A,B,C}\circ ([a]\times ([b]\times [c]))\right](\star ,(\star ,\star ))\\ & = \left[\alpha ^{\prime ,-1}_{A,B,C}\circ (\operatorname {\mathrm{id}}_{A}\times \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|B,C})\right.\\ & \phantom{={}} \mkern 4mu\left.{}\circ \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|A,B\times C}\circ ([a]\times ([b]\times [c]))\right](\star ,(\star ,\star ))\\ & = [\alpha ^{\prime ,-1}_{A,B,C}\circ (\operatorname {\mathrm{id}}_{A}\times \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|B,C})\circ \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|A,B\times C}](a,(b,c)) \end{align*}
for each $(a,(b,c))\in A\times (B\times C)$, and thus we have Taking inverses then gives showing that the diagram
indeed commutes.
Braidedness of the Isomorphism $\mathord {\otimes _{\mathsf{Sets}}}\cong \mathord {\times }$
We have to show that the diagram
commutes. First, note that the diagram
commutes by the terminality of $\mathrm{pt}$ (
Chapter 4: Constructions With Sets,
Construction 4.1.1.1.2). Since the map $!_{\mathrm{pt}\times \mathrm{pt}}\colon \mathrm{pt}\times \mathrm{pt}\to \mathrm{pt}$ is invertible (e.g. with inverse $\lambda ^{\mathsf{Sets},-1}_{\mathrm{pt}}$), the diagram
also commutes. Taking inverses, we see that the diagram
commutes as well. Now, let $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, let $a\in A$, let $b\in B$, and consider the diagram
which we partition into subdiagrams as follows:
Since:
-
•
Subdiagram $(2)$ commutes by the naturality of $\sigma ^{\mathsf{Sets},-1}$.
-
•
Subdiagram $(5)$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}$.
-
•
Subdiagram $(\dagger )$ commutes, as proved above.
-
•
Subdiagram $(4)$ commutes by the naturality of $\sigma ^{\prime ,-1}$.
-
•
Subdiagram $(1)$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}$.
it follows that the diagram
commutes. We then have
\begin{align*} [\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|A,B}\circ \sigma ^{\mathsf{Sets},-1}_{A,B}](b,a) & = [\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|A,B}\circ \sigma ^{\mathsf{Sets},-1}_{A,B}\circ ([b]\times [a])](\star ,\star )\\ & = [\sigma ^{\prime ,-1}_{A,B}\circ \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|B,A}\circ ([b]\times [a])](\star ,\star )\\ & = [\sigma ^{\prime ,-1}_{A,B}\circ \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|B,A}](b,a) \end{align*}
for each $(b,a)\in B\times A$, and thus we have
\[ \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|A,B}\circ \sigma ^{\mathsf{Sets},-1}_{A,B}=\sigma ^{\prime ,-1}_{A,B}\circ \operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}|B,A}. \]
Taking inverses then gives
\[ \sigma ^{\mathsf{Sets}}_{A,B}\circ \operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}|A,B}=\operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}|B,A}\circ \sigma ^{\prime }_{A,B}, \]
showing that the diagram
indeed commutes.
Uniqueness of the Isomorphism $\mathord {\otimes _{\mathsf{Sets}}}\cong \mathord {\times }$
Let $\phi ,\psi \colon -_{1}\otimes _{\mathsf{Sets}}-_{2}\Rightarrow -_{1}\times -_{2}$ be natural isomorphisms. Since these isomorphisms are compatible with the unitors of $\mathsf{Sets}$ with respect to $\times $ and $\otimes $ (as shown above), we have
\begin{align*} \lambda '_{B} & = \lambda ^{\mathsf{Sets}}_{B}\circ \phi _{\mathrm{pt},B}\circ (\operatorname {\mathrm{id}}^{\otimes }_{\mathbb {1}|\mathsf{Sets}}\otimes _{\mathsf{Sets}}\operatorname {\mathrm{id}}_{Y}),\\ \lambda '_{B} & = \lambda ^{\mathsf{Sets}}_{B}\circ \psi _{\mathrm{pt},B}\circ (\operatorname {\mathrm{id}}^{\otimes }_{\mathbb {1}|\mathsf{Sets}}\otimes _{\mathsf{Sets}}\operatorname {\mathrm{id}}_{Y}). \end{align*}
Postcomposing both sides with $\lambda ^{\mathsf{Sets},-1}_{B}$ gives
\begin{align*} \lambda ^{\mathsf{Sets},-1}_{B}\circ \lambda '_{B}\circ (\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}}\otimes _{\mathsf{Sets}}\operatorname {\mathrm{id}}_{Y}) & = \phi _{\mathrm{pt},B},\\ \lambda ^{\mathsf{Sets},-1}_{B}\circ \lambda '_{B}\circ (\operatorname {\mathrm{id}}^{\otimes }_{\mathbb {1}|\mathsf{Sets}}\otimes _{\mathsf{Sets}}\operatorname {\mathrm{id}}_{Y}) & = \psi _{\mathrm{pt},B}, \end{align*}
and thus we have
\[ \phi _{\mathrm{pt},B}=\psi _{\mathrm{pt},B} \]
for each $B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$. Now, let $a\in A$ and consider the naturality diagrams
for $\phi $ and $\psi $ with respect to the morphisms $[a]$ and $\operatorname {\mathrm{id}}_{B}$. Having shown that $\phi _{\mathrm{pt},B}=\psi _{\mathrm{pt},B}$, we have
\begin{align*} \phi _{A,B}(a,b) & = [\phi _{A,B}\circ ([a]\times \operatorname {\mathrm{id}}_{B})](\star ,b)\\ & = [([a]\otimes _{\mathsf{Sets}}\operatorname {\mathrm{id}}_{B})\circ \phi _{\mathrm{pt},B}](\star ,b)\\ & = [([a]\otimes _{\mathsf{Sets}}\operatorname {\mathrm{id}}_{B})\circ \psi _{\mathrm{pt},B}](\star ,b)\\ & = [\psi _{A,B}\circ ([a]\times \operatorname {\mathrm{id}}_{B})](\star ,b)\\ & = \psi _{A,B}(a,b) \end{align*}
for each $(a,b)\in A\times B$. Therefore we have
\[ \phi _{A,B}=\psi _{A,B} \]
for each $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$ and thus $\phi =\psi $, showing the isomorphism $\mathord {\otimes _{\mathsf{Sets}}}\cong \mathord {\times }$ to be unique.
The symmetric monoidal structure on the category $\mathsf{Sets}$ of Proposition 5.1.9.1.1 is uniquely determined by the following requirements:
-
1.
Two-Sided Preservation of Colimits. The tensor product
\[ \otimes _{\mathsf{Sets}}\colon \mathsf{Sets}\times \mathsf{Sets}\to \mathsf{Sets} \]
of $\mathsf{Sets}$ preserves colimits separately in each variable.
-
2.
The Unit Object Is $\mathrm{pt}$. We have $\mathbb {1}_{\mathsf{Sets}}\cong \mathrm{pt}$.
More precisely, the full subcategory of the category $\mathcal{M}_{\mathbb {E}_{\infty }}(\mathsf{Sets})$ of
spanned by the symmetric monoidal categories $(\mathsf{Sets},\otimes _{\mathsf{Sets}},\mathbb {1}_{\mathsf{Sets}},\lambda ^{\mathsf{Sets}},\rho ^{\mathsf{Sets}},\sigma ^{\mathsf{Sets}})$ satisfying Item 1 and Item 2 is contractible.
Since $\mathsf{Sets}$ is locally presentable (
), it follows from
that Item 1 is equivalent to the existence of an internal Hom as in Item 1 of Theorem 5.1.10.1.1. The result then follows from Theorem 5.1.10.1.1.