4.6.4 A Six-Functor Formalism for Sets

    The assignment $X\mapsto \mathcal{P}\webleft (X\webright )$ together with the functors $f_{*}$, $f^{-1}$, and $f_{!}$ of Item 1 of Proposition 4.6.1.1.5, Item 1 of Proposition 4.6.2.1.3, and Item 1 of Proposition 4.6.3.1.7, and the functors

    \begin{align*} -_{1}\cap -_{2} & \colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright ) \to \mathcal{P}\webleft (X\webright ),\\ \webleft [-_{1},-_{2}\webright ]_{X} & \colon \mathcal{P}\webleft (X\webright )^{\mathsf{op}}\times \mathcal{P}\webleft (X\webright ) \to \mathcal{P}\webleft (X\webright ) \end{align*}

    of Item 1 of Proposition 4.3.9.1.2 and Item 1 of Proposition 4.4.7.1.3 satisfy several properties reminiscent of a six functor formalism in the sense of Unresolved reference.

    We collect these properties in Proposition 4.6.4.1.2 below.1

    Let $X$ be a set.

    1. 1.

      The Beck–Chevalley Condition. Let

      be a pullback diagram in $\mathsf{Sets}$. We have

    2. 2.

      The Projection Formula I. The diagram

      commutes, i.e. we have

      \[ f_{!}\webleft (U\cap f^{-1}\webleft (V\webright )\webright )=f_{!}\webleft (U\webright )\cap V \]

      for each $U\in \mathcal{P}\webleft (X\webright )$ and each $V\in \mathcal{P}\webleft (Y\webright )$.

    3. 3.

      The Projection Formula II. We have a natural transformation

      with components

      \[ f_{*}\webleft (U\webright )\cap V\subset f_{*}\webleft (U\cap f^{-1}\webleft (V\webright )\webright ) \]

      indexed by $U\in \mathcal{P}\webleft (X\webright )$ and $V\in \mathcal{P}\webleft (Y\webright )$.

    4. 4.

      Strong Closed Monoidality. The diagram

      commutes, i.e. we have an equality of sets

      \[ f^{-1}\webleft (\webleft [U,V\webright ]_{Y}\webright )=\webleft [f^{-1}\webleft (U\webright ),f^{-1}\webleft (V\webright )\webright ]_{X}, \]

      natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

    5. 5.

      The External Tensor Product. We have an external tensor product

      \[ -_{1}\boxtimes _{X\times Y}-_{2}\colon \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright )\to \mathcal{P}\webleft (X\times Y\webright ) \]

      given by

      \begin{align*} U\boxtimes _{X\times Y}V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{\mathrm{pr}}}^{-1}_{1}\webleft (U\webright )\cap \operatorname {\mathrm{\mathrm{pr}}}^{-1}_{2}\webleft (V\webright )\\ & = \left\{ \webleft (u,v\webright )\in X\times Y\ \middle |\ \text{$u\in U$ and $v\in V$}\right\} . \end{align*}

      This is the same map as the one in Item 5 of Proposition 4.4.1.1.4. Moreover, the following conditions are satisfied:

      1. (a)

        Interaction With Direct Images. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be functions. The diagram

        commutes, i.e. we have

        \[ \webleft [f_{!}\times g_{!}\webright ]\webleft (U\boxtimes _{X\times Y}V\webright )=f_{!}\webleft (U\webright )\boxtimes _{X'\times Y'}g_{!}\webleft (V\webright ) \]

        for each $\webleft (U,V\webright )\in \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright )$.

      2. (b)

        Interaction With Inverse Images. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be functions. The diagram

        commutes, i.e. we have

        \[ \webleft [f^{-1}\times g^{-1}\webright ]\webleft (U\boxtimes _{X'\times Y'}V\webright )=f^{-1}\webleft (U\webright )\boxtimes _{X\times Y}g^{-1}\webleft (V\webright ) \]

        for each $\webleft (U,V\webright )\in \mathcal{P}\webleft (X'\webright )\times \mathcal{P}\webleft (Y'\webright )$.

      3. (c)

        Interaction With Codirect Images. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be functions. The diagram

        commutes, i.e. we have

        \[ \webleft [f_{*}\times g_{*}\webright ]\webleft (U\boxtimes _{X\times Y}V\webright )=f_{*}\webleft (U\webright )\boxtimes _{X'\times Y'}g_{*}\webleft (V\webright ) \]

        for each $\webleft (U,V\webright )\in \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright )$.

      4. (d)

        Interaction With Diagonals. The diagram

        i.e. we have

        \[ U\cap V=\Delta ^{-1}_{X}\webleft (U\boxtimes _{X\times X}V\webright ) \]

        for each $U,V\in \mathcal{P}\webleft (X\webright )$.

    6. 6.

      The Dualisation Functor. We have a functor

      \[ D_{X}\colon \mathcal{P}\webleft (X\webright )^{\mathsf{op}}\to \mathcal{P}\webleft (X\webright ) \]

      given by

      \begin{align*} D_{X}\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,\text{Ø}\webright ]_{X}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}} \end{align*}

      for each $U\in \mathcal{P}\webleft (X\webright )$, as in Item 5 of Proposition 4.4.7.1.3, satisfying the following conditions:

      1. (a)

        Duality. We have

      2. (b)

        Duality. The diagram

        commutes, i.e. we have

        \[ \underbrace{D_{X}\webleft (U\cap D_{X}\webleft (V\webright )\webright )}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U\cap \webleft [V,\text{Ø}\webright ]_{X},\text{Ø}\webright ]_{X}}=\webleft [U,V\webright ]_{X} \]

        for each $U,V\in \mathcal{P}\webleft (X\webright )$.

      3. (c)

        Interaction With Direct Images. The diagram

        commutes, i.e. we have

        \[ f_{!}\webleft (D_{X}\webleft (U\webright )\webright )=D_{Y}\webleft (f_{*}\webleft (U\webright )\webright ) \]

        for each $U\in \mathcal{P}\webleft (X\webright )$.

      4. (d)

        Interaction With Inverse Images. The diagram

        commutes, i.e. we have

        \[ f^{-1}\webleft (D_{Y}\webleft (U\webright )\webright )=D_{X}\webleft (f^{-1}\webleft (U\webright )\webright ) \]

        for each $U\in \mathcal{P}\webleft (X\webright )$.

      5. (e)

        Interaction With Codirect Images. The diagram

        commutes, i.e. we have

        \[ f_{*}\webleft (D_{X}\webleft (U\webright )\webright )=D_{Y}\webleft (f_{!}\webleft (U\webright )\webright ) \]

        for each $U\in \mathcal{P}\webleft (X\webright )$.

    Item 1: The Beck–Chevalley Condition
    We have

    \begin{align*} \webleft [g^{-1}\circ f_{!}\webright ]\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g^{-1}\webleft (f_{!}\webleft (U\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ y\in Y\ \middle |\ g\webleft (y\webright )\in f_{!}\webleft (U\webright )\right\} \\ & = \left\{ y\in Y\ \middle |\ \begin{aligned} & \text{there exists some $x\in U$}\\ & \text{such that $f\webleft (x\webright )=g\webleft (y\webright )$}\end{aligned}\right\} \\ & = \left\{ y\in Y\ \middle |\ \begin{aligned} & \text{there exists some}\\ & \text{$(x,y)\in \left\{ (x,y)\in X\times _{Z}Y\ \middle |\ x\in U\right\} $}\end{aligned}\right\} \\ & = \left\{ y\in Y\ \middle |\ \begin{aligned} & \text{there exists some}\\ & \text{$(x,y)\in \left\{ (x,y)\in X\times _{Z}Y\ \middle |\ x\in U\right\} $}\\ & \text{such that $y=y$}\end{aligned}\right\} \\ & = \left\{ y\in Y\ \middle |\ \begin{aligned} & \text{there exists some}\\ & \text{$(x,y)\in \left\{ (x,y)\in X\times _{Z}Y\ \middle |\ x\in U\right\} $}\\ & \text{such that $\operatorname {\mathrm{\mathrm{pr}}}_{2}\webleft (x,y\webright )=y$}\end{aligned}\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\operatorname {\mathrm{\mathrm{pr}}}_{2}\webright )_{!}\webleft (\left\{ \webleft (x,y\webright )\in X\times _{Z}Y\ \middle |\ x\in U\right\} \webright )\\ & = \webleft (\operatorname {\mathrm{\mathrm{pr}}}_{2}\webright )_{!}\webleft (\left\{ \webleft (x,y\webright )\in X\times _{Z}Y\ \middle |\ \operatorname {\mathrm{\mathrm{pr}}}_{1}\webleft (x,y\webright )\in U\right\} \webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\operatorname {\mathrm{\mathrm{pr}}}_{2}\webright )_{!}\webleft (\operatorname {\mathrm{\mathrm{pr}}}^{-1}_{1}\webleft (U\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (\operatorname {\mathrm{\mathrm{pr}}}_{2}\webright )_{!}\circ \operatorname {\mathrm{\mathrm{pr}}}^{-1}_{1}\webright ]\webleft (U\webright ) \end{align*}

    for each $U\in \mathcal{P}\webleft (X\webright )$. Therefore, we have

    \[ g^{-1}\circ f_{!}=\webleft (\operatorname {\mathrm{\mathrm{pr}}}_{2}\webright )_{!}\circ \operatorname {\mathrm{\mathrm{pr}}}^{-1}_{1}. \]

    For the second equality, we have

    \begin{align*} \webleft [f^{-1}\circ g_{!}\webright ]\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f^{-1}\webleft (g_{!}\webleft (U\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ f\webleft (x\webright )\in g_{!}\webleft (V\webright )\right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some $y\in V$}\\ & \text{such that $f\webleft (x\webright )=g\webleft (y\webright )$}\end{aligned}\right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some}\\ & \text{$(x,y)\in \left\{ (x,y)\in X\times _{Z}Y\ \middle |\ y\in V\right\} $}\end{aligned}\right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some}\\ & \text{$(x,y)\in \left\{ (x,y)\in X\times _{Z}Y\ \middle |\ y\in V\right\} $}\\ & \text{such that $x=x$}\end{aligned}\right\} \\ & = \left\{ x\in X\ \middle |\ \begin{aligned} & \text{there exists some}\\ & \text{$(x,y)\in \left\{ (x,y)\in X\times _{Z}Y\ \middle |\ y\in V\right\} $}\\ & \text{such that $\operatorname {\mathrm{\mathrm{pr}}}_{1}\webleft (x,y\webright )=x$}\end{aligned}\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\operatorname {\mathrm{\mathrm{pr}}}_{1}\webright )_{!}\webleft (\left\{ \webleft (x,y\webright )\in X\times _{Z}Y\ \middle |\ y\in V\right\} \webright )\\ & = \webleft (\operatorname {\mathrm{\mathrm{pr}}}_{1}\webright )_{!}\webleft (\left\{ \webleft (x,y\webright )\in X\times _{Z}Y\ \middle |\ \operatorname {\mathrm{\mathrm{pr}}}_{2}\webleft (x,y\webright )\in V\right\} \webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\operatorname {\mathrm{\mathrm{pr}}}_{1}\webright )_{!}\webleft (\operatorname {\mathrm{\mathrm{pr}}}^{-1}_{2}\webleft (V\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (\operatorname {\mathrm{\mathrm{pr}}}_{1}\webright )_{!}\circ \operatorname {\mathrm{\mathrm{pr}}}^{-1}_{2}\webright ]\webleft (V\webright ) \end{align*}

    for each $V\in \mathcal{P}\webleft (Y\webright )$. Therefore, we have

    \[ f^{-1}\circ g_{!}=\webleft (\operatorname {\mathrm{\mathrm{pr}}}_{1}\webright )_{!}\circ \operatorname {\mathrm{\mathrm{pr}}}^{-1}_{2}. \]

    This finishes the proof.

    Item 2: The Projection Formula I
    We claim that

    \[ f_{!}\webleft (U\webright )\cap V\subset f_{!}\webleft (U\cap f^{-1}\webleft (V\webright )\webright ). \]

    Indeed, we have

    \begin{align*} f_{!}\webleft (U\webright )\cap V & \subset f_{!}\webleft (U\webright )\cap f_{!}\webleft (f^{-1}\webleft (V\webright )\webright )\\ & = f_{!}\webleft (U\cap f^{-1}\webleft (V\webright )\webright ), \end{align*}

    where we have used:

    1. 1.

      Item 2 of Proposition 4.6.1.1.5 for the inclusion.

    2. 2.

      Item 6 of Proposition 4.6.1.1.5 for the equality.

    Conversely, we claim that

    \[ f_{!}\webleft (U\cap f^{-1}\webleft (V\webright )\webright )\subset f_{!}\webleft (U\webright )\cap V. \]

    Indeed:

    1. 1.

      Let $y\in f_{!}\webleft (U\cap f^{-1}\webleft (V\webright )\webright )$.

    2. 2.

      Since $y\in f_{!}\webleft (U\cap f^{-1}\webleft (V\webright )\webright )$, there exists some $x\in U\cap f^{-1}\webleft (V\webright )$ such that $f\webleft (x\webright )=y$.

  • 3.

    Since $x\in U\cap f^{-1}\webleft (V\webright )$, we have $x\in U$, and thus $f\webleft (x\webright )\in f_{!}\webleft (U\webright )$.

  • 4.

    Since $x\in U\cap f^{-1}\webleft (V\webright )$, we have $x\in f^{-1}\webleft (V\webright )$, and thus $f\webleft (x\webright )\in V$.

  • 5.

    Since $f\webleft (x\webright )\in f_{!}\webleft (U\webright )$ and $f\webleft (x\webright )\in V$, we have $f\webleft (x\webright )\in f_{!}\webleft (U\webright )\cap V$.

  • 6.

    But $y=f\webleft (x\webright )$, so $y\in f_{!}\webleft (U\webright )\cap V$.

  • 7.

    Thus $f_{!}\webleft (U\cap f^{-1}\webleft (V\webright )\webright )\subset f_{!}\webleft (U\webright )\cap V$.

  • This finishes the proof.

    Item 3: The Projection Formula II
    We have

    \begin{align*} f_{*}\webleft (U\webright )\cap V & \subset f_{*}\webleft (U\webright )\cap f_{*}\webleft (f^{-1}\webleft (V\webright )\webright )\\ & = f_{*}\webleft (U\cap f^{-1}\webleft (V\webright )\webright ), \end{align*}

    where we have used:

    1. 1.

      Item 2 of Proposition 4.6.3.1.7 for the inclusion.

    2. 2.

      Item 6 of Proposition 4.6.3.1.7 for the equality.

    Since $\mathcal{P}\webleft (Y\webright )$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2).

    Item 4: Strong Closed Monoidality
    This is a repetition of Item 19 of Proposition 4.4.7.1.3 and is proved there.

    Item 5: The External Tensor Product
    We have

    \begin{align*} U\boxtimes _{X\times Y}V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{\mathrm{pr}}}^{-1}_{1}\webleft (U\webright )\cap \operatorname {\mathrm{\mathrm{pr}}}^{-1}_{2}\webleft (V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \webleft (x,y\webright )\in X\times Y\ \middle |\ \operatorname {\mathrm{\mathrm{pr}}}_{1}\webleft (x,y\webright )\in U\right\} \\ & \phantom{={}} \mkern 4mu\cup \left\{ \webleft (x,y\webright )\in X\times Y\ \middle |\ \operatorname {\mathrm{\mathrm{pr}}}_{2}\webleft (x,y\webright )\in V\right\} \\ & = \left\{ \webleft (x,y\webright )\in X\times Y\ \middle |\ x\in U\right\} \\ & \phantom{={}} \mkern 4mu\cup \left\{ \webleft (x,y\webright )\in X\times Y\ \middle |\ y\in V\right\} \\ & = \left\{ \webleft (x,y\webright )\in X\times Y\ \middle |\ \text{$x\in U$ and $y\in V$}\right\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U\times V. \end{align*}

    Next, we claim that Item 5a, Item 5b, Item 5c, and Item 5d are indeed true:

    1. 1.

      Proof of Item 5a: This is a repetition of Item 16 of Proposition 4.6.1.1.5 and is proved there.

    2. 2.

      Proof of Item 5b: This is a repetition of Item 16 of Proposition 4.6.2.1.3 and is proved there.

    3. 3.

      Proof of Item 5c: This is a repetition of Item 15 of Proposition 4.6.3.1.7 and is proved there.

    4. 4.

      Proof of Item 5d: We have

      \begin{align*} \Delta ^{-1}_{X}\webleft (U\boxtimes _{X\times X}V\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\in X\ \middle |\ \webleft (x,x\webright )\in U\boxtimes _{X\times X}V\right\} \\ & = \left\{ x\in X\ \middle |\ \webleft (x,x\webright )\in \left\{ \webleft (u,v\webright )\in X\times X\ \middle |\ \text{$u\in U$ and $v\in V$}\right\} \right\} \\ & = U\cap V.\end{align*}

    This finishes the proof.

    Item 6: The Dualisation Functor
    This is a repetition of Item 5 and Item 6 of Proposition 4.4.7.1.3 and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: