Let $\preceq _{A}$ be a preorder on $A$, viewed also as an internal monad on $A$ via Proposition 8.5.4.1.1.
-
1.
Left Modules. We have a natural identification
\[ \left\{ \text{Left modules over $\mathord {\preceq _{A}}$}\right\} \cong \left\{ \begin{aligned} & \text{Relations $R\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A$ such that,}\\ & \text{for each $b\in B$, the set $R(b)$ is}\\ & \text{upward-closed in $A$}\end{aligned} \right\} . \]