Let $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$.
Let $\mathcal{C}$ be a category.
Let $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$.
The representable presheaf associated to $A$ is the presheaf
where
Action on Objects. For each $X\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, we have
Action on Morphisms. For each $X,Y\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the action on morphisms
of $h_{A}$ at $(X,Y)$ is given by sending a morphism
of $\mathcal{C}$ to the map of sets
defined by
where $f^{*}$ is the precomposition by $f$ morphism of Chapter 11: Categories, Item 1 of Definition 11.1.4.1.1.
A representing object for a presheaf $\mathcal{F}\colon \mathcal{C}^{\mathsf{op}}\to \mathsf{Sets}$ on $\mathcal{C}$ is an object $A$ of $\mathcal{C}$ such that we have $\mathcal{F}\cong h_{A}$.
A presheaf $\mathcal{F}\colon \mathcal{C}^{\mathsf{op}}\to \mathsf{Sets}$ on $\mathcal{C}$ is representable if $\mathcal{F}$ admits a representing object.
The representable presheaf on the delooping $\mathsf{B}{A}$ of a monoid $A$ associated to the unique object $\bullet $ of $\mathsf{B}{A}$ is the left regular representation of $A$ of ,
.
Let $\mathcal{F}\colon \mathcal{C}^{\mathsf{op}}\to \mathsf{Sets}$ be a presheaf. If there exist $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$ such that we have natural isomorphisms
then $A\cong B$.
By composing the isomorphisms $h_{A}\cong \mathcal{F}\cong h_{B}$, we get a natural isomorphism $h_{A}\cong h_{B}$. By Item 2 of Proposition 12.1.4.1.3, we have $A\cong B$.